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1. Introduction

The main object of this paper is to prove a simple theorem of combinatorial
nature and to show its usefulness in the theory of stochastic processes. The
theorem mentioned is as follows.
THEOREM 1. Let p(u), 0 < u < oo, be a nondecreasing step function satisfy-

ing the conditions p(O) = 0 and rp(t + u) = (p(t) + p(u) for u > 0 where t is a
finite positive number. Define
(1) ,(u) 1 if v- p(v) > u-so(u) for v > u,

~U-O otherwise.
Then

ft ft - (t) if 0.< ~0(t . t,
(2) 5(u) du = lOif (p(t) > t.

PROOF. If p(t) > t, then 6(u) = 0 for every u, and thus the theorem is
obviously true.
Now consider the case 0 < (p(t) < t. For u > 0 define 4'(u) = inf {v -<(v)

for v > u}. We have A'(u) < u -o(u), and 4,(u) = u -5(u) if and only if
5(u) = 1 (compare figures 1, 2, 3).

It is clear that 4,(u + t) = A/(u) + t - p(t) for u > 0 and that 0 < At(v)-
4,(u) < v - u for 0 < u < v. Thus 4,'(u) exists for almost all u, 0 < ,6'(u) < 1,
and

(3) Jot ,'(u) du = 4'(t) - iI'(0) = t - p(t)
because 4'(u) is amonotoine and absolutely continuous fuinction of u. We also
note that so(u + 0) = sn(u) and V'(u) = 0 for almost all u.

First we prove that
(4) ,6'(u) < a(u) for almost all u.

If +'(u) exists and if 4'(u) = 0, then (4) evidently holds. Now we shall prove
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FIGURE 1

that if V/'(u) exists, if 4"(u) > 0 and if ,o(u + 0) = p(u), then 6(u) 1. If
,6'(u) > 0, then s6(v) > ,6(u) for v > u, anid therefore ,6(u) = infu<,<, [s -(s)]
for v > u. Thus u - o(v) < 4/(u) < u - p(u) for v > u, and consequenitly,
u -50(u + 0) < ,6(u) < u - p(u). If s,(u + 0) = Sc(u), theni 46(u) = u-. (t)
which implies that 6(u) = 1. Sinice ip'(u) < 1 always holds, (4) follows.
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FIGUR1E 3

Seconid, w%ve prove that

(5) b(ut) < #'(u) for allmiost all it.

If 3(ut) = 0 anid //(u) exists, theni (5) evidenitly holds. Now Ave shall prove that
if 3(u) = 1, if 4,'(n) exists, if p'(u) = 0, anid if it is ani accumulation l)oint of the
set D = {u: 3(u) = 1, 0 < it < o}, tlheni 4'(u) = 1. Suppose that u G D) anid
u lim,n_ Uit lwhere u,, E 1) anid u,,X it. Thei ,6(u) = u -$ (u) anid '(Uln) =
Un- (u,) Accortdinigly, if l"(u) exists anid if 0'(u)= 0, we have

(6) f(u) lini 4,1111 (lt- p()-) 1 - i'(t) = 1.

Sinice the isolated points of the set D form a couuitable set (possibly emlpty),
(5) follows.

If we compare (4) anid (5), theni we obtaini that ,p'(u) = 3(u) for almost all u.

Henice, by (3) we get (2) for (p(t) < t. This completes the l)roof of the theorem.
We niote that if wve alter the definiitioni of b(u) stlch that 3(u) = 1 when

v - p(v) > it - p(u) for all t' > u, anid 3(u) = 0 otherwise, theti (2) remainis
unchaniged.

Furthermore, if u is a disconitiniuity poin1t of sc(u), tlieii (0(u) miiay take aniy
value in the initerval [<p(u - 0), p(u + 0)].
By using theorem 1, we shall formulate a theoremii for stochastic pirocesses

which will play a funidami-ental role in our conisiderations. By this theoremiwe
shall finid the distributioni of the supremuim for certaini types of stochastic
processes. The results obtained will be applied in the theory of order statistics,
in the theory of qIueues, in the theory of dams, and in the theory of mnathematical
risk. We shall also prove soIme results for a randomii walk process.
RENIARK 1. InI a similar way we cani prove the followinig discrete version of

theorem 1.
THEOREM 2. Let p(u), u = 0,1, 2, * , be a nondccreasing function of u

satisfying the conditions (p(0) = 0 and ep(t + u) = <(t) + (p(u) for u = 0, 1, 2, *
where t is a positive integer. Define

(7) 6 (u) = i( ftl v iP(v) > it - (u) fol v > It,(7) 3(u) {~f othierwvse.
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Then

(8) =l 6(uf) ft-{ i(t) if 0.<(t) < t,
u-1 fVo if ~0(t > t.

PROOF. The case of <p(t) > t is trivial. Suppose that 0 < s(t) S t. Let
,(u) = inf {v - o(v) for v > u} for u = 0, 1, 2, * - - . Evidently 41(u + t)
/(u) + t - p(t) and 6(u) = p(u + 1) - #(u) for u > 0. Therefore

t

(9) E 6(u) = t(t + 1) -4(1) = t- (t),
u=1

which proves the statement.
Among others, (8) yields an immediate proof for a generalizatioil of the

classical ballot theorem. (Cf. Takacs [12].)
If we would deal with stochastic sequences instead of stochastic processes,

then by using theorem 2 instead of theorem 1 we could replace each theorem
proved for stochastic processes by an analogous theorem for stochastic sequences.

2. Stochastic processes with cyclically interchangeable increments

Let {x(u), 0 < u < t} be a stochastic process where t is a finite positive
number. We associate a stochastic process {x*(u), 0 < u < oo } with {x(u),
0 < u < t} such that x*(u) = x(u) for 0 < u < t and x*(t + u) = x*(t) +
x*(u) for u > 0. If the finite dimensional distributions of {x*(v + u) -x*(v),
0 < u < t} are independent of v for v > 0, then the process {x(u), 0 < u < t}
is said to have cyclically interchangeable increments.

First we shall give a simple example for such a process. For 0 < u < t, defiile

(10) x(u) = E Xr
0 <" .U

where Ti, 72, * * n,r, are mutually independent random variables havilng a
uniform distribution over the interval (0, t) and XI, X2, * * * , Xn are cyclically
interchangeable random variables; that is, all the n cyclic permutations of
X1, X2, ...* Xn have a common joint distribution. If {Tr} and {Xr} are independ-
ent sequences, then {x(u), 0 < u < t} is a stochastic process with cyclically
interchangeable increments.
Now we shall prove our fundamenital theorem.
THEOREM 3. If {x(u), 0 < u < t} is a separable stochastic process with

cyclically interchangeable increments and if almost all sample functions are non-
decreasing step functions which vanish at u = 0, then

(11) P{x(u) S u for 0 < u < tlx(t)} = ( t)) if 0S(t) S t,
O if x(t) > t,

with probability 1.
PROOF. Let x*(u) = x(u) for 0 < u < t and X*(t + u) = x*(t) + x*(u) for

u > 0. Definie



COMBINATORIAL METHODS 435

(12) = 1 if x*(v)-X*(u) < v - u for v > u,

Then 5*(u) is a random variable which has the same distribution for all u > 0.
Now we have

(13) P{x(u) < u for 0 < u < tlx(t)} = E{6*(O)Ix(t)}

- 1 fO E{a*(u)lx(t)} du = E {t 6*(u) dulx(t)}

.t1 _ X(t)) if O < x(t) < t,

0 if x(t) > t,
with probability 1, because by (2),

(14) I *(u) d - ft- x(t) if O
< x(t) < t,J\U) U - o if X(t)

holds for almost all sample functions. This completes the proof of the theorem.
Finally, we note that from (11) it follows that

(15) P{x(u) < u forO < u < t} = E{[1 - x(t)]+}

where [x]+ denotes the positive part of x.

3. Stochastic processes with interchangeable increments and
stochastic processes with stationary independent increments

A stochastic process {x(u), 0 < u < T} is said to have interchangeable
increments if for all n = 2, 3, * * * and for all t E (0, T]

(16) x (t)-x (rt t) (r = 1, 2, * n)

are interchangeable random variables; that is, all the n! permutations of the
random variables (16) have a common joint distribution.

If, in particular, for all n = 2, 3, * * * and for all t E (0, T] the random var-
iables (16) are mutually independent, identically distributed random variables,
then the stochastic process {x(u), 0 < u < T} is said to have stationary,
independent increments.

If P{x(O) = O} = 1, then in both cases the stochastic process {x(u), 0 < u < t}
has cyclically interchangeable increments for all finite t E (0, T].

In all subsequent considerations we are concerned with stochastic processes
{x(u), 0 < u < T} having either interchangeable increments or stationary,
independent increments and for which almost all sample functions are non-
decreasing step functions vanishing at u = 0. The parameter range [0, T] may
be either finite or infinite.
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First of all, I shouild like to mention a few basic properties of the processes
{x(u), 0 < u < T}. Many theorems valid for stochastic processes with sta-
tionary, independent increments can be carried over to stochastic processes
with interchangeable increments, because interchangeability is equivalent to
conditional independence with common distribution (Cf. M. Loeve [6], p. 365
anid H. Buihlmann [2].)

For both types of processes,

(17) E{x(t)} = pt
if 0 < t < Y' where p is a nionniiegative niumber (possibly p = xc). If p = 0, thei
I'x(t) = O} = 1 for all t G [0, T].

If fx(u), 0 < u < ox} has stationary independent increments and p < oo,
then for {x(u), 0 < u < } both the weak law and strong law of large numbers
lhold. Namely for any e > 0,

(18) limP 4'(I

t J

(Cf. J. L. Doob [4], p. 364.)
If {x(u), 0 < u < oo} is a separable stochastic process, then (15) holds for all

t> 0. If t ooin (15), then by using (18) we obtain

Pf 1~~C- p if p <l,(20) P{x(u) < u for O< u < x} =

{O if p > 1.

The left-hanid side follows from the continuity theorem for probabilities, anid
the riglht-lhanid side from1 the fact that [1 - (X(t)/t)]+ is bounided and converges
inl prohability to [1 - p]+.
We also men-tion that

(21) Pf Sill) [x(u) - u] < X} = if p < 1,
0 <14 ~~ ~ ~ O if~ . 1.

For p #- 1 this follows from (19), anid for p = 1 by a theorem of K. L. Chunig
anid W. H. J. Fuchs [3].

If {x(u), 0 < u < has nonniiegative, stationary, independent increments,
then for 9(s) > 0,
(22) JE-cx(uA = CU¢(8)

wit,h aii appropriate 4(s) anid p = lim80o 4(s)/s.

4. The distribution of the supremum for stochastic processes with
interchangeable increments

In the theory and applications of stochastic processes there frequenltly arises
tlle problem of finidinig the distributioni of supO<u <t t(u) where {t(u), O < u < }
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is a separable stochastic process. For stochastic processes with stationiary in-
dependent increments G. Baxter anid M. D. Donsker [1] solved this problem
in principle. They determiined the double Laplace-Stieltjes transform of
P{supo<.<t t(u) < x} for such processes. However, even in simple cases, it
seems too complicated to invert the transforms.

In this section we shall show that for a wide class of stochastic processes the
distribution of supo <u <t~(u) can be found in a simple way by making use of
theorem 3.

In this sectioni we suppose that {x(u), 0 < u < T} is a separable stochastic
process with interchangeable incremeiits anid that almost all sample functions
are nondecreasing step functions which vanish at u = 0.
We shall consider the following two processes with interchanigeable incremenits:

{l(u) = x(u) - u aind 42(u) = u - x(u) for 0 < u < T, and we shall find the
distribution of supo<u.t {l(u) and that of supo<u<t t2(u) for 0 < t < T.

In what follows we shall use the notation d2P{x(u) < x4 = P{x < x(u) <
x + dx} regardless of whether u depends oIn x or iiot.
THEOREM 4. If {x(u), 0 < u < T} is a separable stochastic process with

interchangeable increments and if almost all sample functions are nondecreasing
step functions which vanish at u = 0, then

(23) P{ sup [x(u) -u] < x = P{X(t) < t +x}
0<u<t

- If ()2tz dPdPx(y) < y + x, x(t) < z + x}
O<y<z<t

for all x and for all finite t c (0, T].
PROOF. We shall prove that the subtraheiid oni the right-hand side of (23)

is the probability that x(t) < t + x anid x(u) > u + x for some u G [0, t]
(compare figure 4). Suppose that x(t) = z + x where 0 < z < t and that the
last passage of x(u) through u + x occurs at u = y. Then x(Y) = y + x anid
x(u) - x(Y) < u - y for y < u < t. Given that x(Y) = y + x and x(t) =z + x,
by theorem 3, the event {x(u) - x(Y) < u - y for y < u < t} has probability
(t - z)/(t - y) if 0 < y < z < t. If we integrate (t - z)/(t - y) with respect
to P{y + x < x(y) < y + x + dy, z + x < x(t) < z + x + dz} over the do-
main 0 < y < z < t, then we get the subtrahend on the right-hand side of (23).

If, in particular, x = 0 in (23), then by (15),

(24) P{ sup [x(u) - u] < } = f (1- d1,P{x(t) < y}.
O<u<t t

THEOREM 5. If {x(u), 0 < u < T} is a separable stochastic process with
interchangeable increments and if almost all sample functions are nondecreasing
step functions which vanish at u = 0, then

(215)) Pf sup [u -X(U)] < x} = 1- f d,P{x(y) < y -x
o<u<t x Y

for 0 < x < t < 7'.
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x+Y
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0 y t U

FIGURE 4

PROOF. We shall prove that the subtrahend on the right-hand side of (25)
is the probability that x(u) < u- x for some u e (0, t] (compare figure 5).
Suppose that the first passage of x(u) through u - x occurs at u = y where
x < y < t. Then x(Y) = y - x and x(u) > u - x for 0 < u < y, or equiv-
alently, x(Y) - x(u) < y - u for 0 < u < y. Given that x(Y) = y - x, by
theorem 3, the event {x(Y) - x(u) < y - u for 0 < u < y} has probability
x/y for 0 < x < y. If we integrate x/y with respect to P{y - x < x(Y) <
y - x + dy} from x to t, then we get the subtrahend on the right-hand side
of (25).
EXAMPLE 1. Theory of order statistics (cf. L. TakAcs [15] and [16]). Let
6, ... ,*X, be mutually independent random variables having a common
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FIGURE 5

continuous distribution function F(u). Denote by Fn(u) the empirical distribu-
tion function of the sample 1 2, .* * , (n). For 0 < a < d < 1, define

(26) na(a, ) = sup [F.(u) - F(u)].
a<F(u)<,S

It can easily be seen that 6,+(a, ,B) is a distribution-free statistic. To find the
distribution of b+ (a, ,B) we may suppose that F(u) = u for 0 < u < 1. Then
Fn(u) = x(u) for 0 < u < 1 where the process {x(u), 0 < u < 1} is defined as
follows. We choose n points independently in the interval (0, 1) such that each
point has a uniform distribution over (0, 1). Denote by x(u) the ratio of the
number of points in the interval (0, u] to n. Then the process {x(u), 0 < u < 1}
has interchangeable increments and satisfies the assumptions of theorem 4. Now
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(27) P{&+(a, () < X4 = P{ SUp [X(u) - U] < X
a u<p

and by a slight modification of (23) we get

(28) P{ sup [x(u) - u] < x} = P{x($3) < (3 + X4

a<E< (kt _ y) P{x(y) = y + x, x(G) = z + 4'
for all x. In (28) P{x(y) = y + x, x(1) = z + x4 = 0, except if y = (j - nx)/n.
and z = (k - nx)/n where 0 < j < k < n. Thus for x> 0,

(29) P{{69 (3)=)< x k <n+) P {x(/3) =n

n(x+a)<j.k<n(z+)[fln(x+ c) - j. ( nx) =n,x(1) = k}

and here

(30) Pn{X() = U1= Ui(j - u)n-i

for O < j < n aiid 0 < u < 1, and

(31) P{x(u) =i x(v)=!=k (k n k'u(V - U)k1j(j - V)n-k
) x n n(Un} j!(k -j)!(n -k)! U'(-)-(-)-

forO < j < k < n aiid0 < u < v < 1.

5. The distribution of the supremum for stochastic processes with stationary
independent increments

If {x(u), 0 < u < T} has stationary independent increments, then (23)
becomes

(32) P{ sup [x(t) - u] < x = P{x(t) < t + x4
O <u <t

-|ff (t z) d,P{x(y) < y + x}d2P{x(t - y) < z - y}
O<Y<z<t

which is valid for all x and for all finite t E (0, T]. For, in this case, x(Y) and
x(t) - x(Y) are independent variables and x(t) - x(Y) has the same distribution
as x(t - y). If we introduce the notation
(33) W(t, x) = P{ sup [x(u) - u] < x4

0 <u<t

and W(x) = W(oo, x), then by (24) we can write down (32) in the following
form:

(34) W(t, x) = P{x(t) < t + x} - WV(t - y, O)d,P{x(y) < y + x}.

If T = oc and t = oc, then (32) or (34) cannot be used to find WV(x) =
P{supo.U<.< [x(u) -u] < x}; however, the following theorem is applicable.
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TrHEOREM 6. If {x(u), 0 < u < X) is a separable stochastic process with
stationary independent increments, if almost all sample functions are nondecreasing
step functions which vanish at u = 0, and if Ef{x(u)} = pu, then for every x,

(35) Pf s<Up [X(u) - u] < x = 1-(1-P) 0 dPx(y) < y +x}
0 <u< fo

whenever 0 < p < 1. IJ p > 1, then the left-hand side qf (35) is 0.
lROOF. By the conitiniuity theoremi for probabilities we have

IlF(X) = lim I1'(t, x).
t-*c

First, let 0 < p < 1. Tlihen, by (20), we fintd that W1"(O) = limnt- JV(t, 0) =
1 - p. If we let t -* in (34), then we get (35). It follows from (21) that
lV(x ) = 1, that is, 1V(x) is a proper distribution function. Evidently, W(x) = 0
if x < 0. If p > 1, then IV(x) = 0 for every x, which follows from (21). If
{x(u), 0 < u < T} has stationary independenit incremeents, then theorem 5 is
applicable for every t (finite or infiniite), and thus, in the case of T = x,

(36) Pf sup [u - x(u)] < x4 1 - f d,P{x(y) < y - X4

for x > 0.
REMARK 2. If 5x(u), 0 < u < x) las stationiary indepenidenit increiimenits

and 4(s) is given by (22), then we can prove easily that the distributions (35)
aind (36) can also be obtained in the following way.

If 0 < p < 1, then for the distribution functioni l}!(x) defined by (35) we have

(37) f e-8 dIV(x) =
1 - p

1 - -

wheniever 9T(s) > 0.
Further, for x > 0 we have

(38) P{ sup [u - x(u)] < 4 = 1e-

where X is the largest real root of the equation b(co) = cw. If 0 < p < 1, theii
X = 0, and if p > 1, then w > 0. (Cf. L. Takacs [17].)
EXAMPLE 2. Theory of queues (cf. L. Takacs [9], [11], and [13]). Suppose

that in the time interval (0, x) customers arrive at a counter in accordance
with a random process. The customers are served by a single server ill the
order of arrival. The server is idle if and onily if there is no customer in the
system. Denote by x(u) the total service time of all those customers who arrive
in the interval (0, u]. We suppose that {x(u), 0 < u < oo } is a separate stochastic
process with nonnegative, stationary, independent increments and that almost
all sample functions are nondecreasing step functions vanishing at u = 0. Denote
by 71(t) the virtual waiting time at time t, that is, the time that a customer
would have to wait if he arrived at time t. Let a(t) denote the total idle time
of the server in the initerval (0, t). If a(O) = 0, theni it can easily be seenl that
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(39) P{f(t) < xI = P{ sup [x(u) - u] < x}
O<<ct

and
(40) P{a(t) < xI = P{ sup [u - x(u)] < x}.

o<u<t

If, in particular, customers arrive at the counter in accordalnce with a Poisson
process of density X and the service times are mutually indepenident, identically
distributed random variables with distribution function H(x) and independent
of the arrival times, then {x(u), 0 < u < o} has nonnegative stationary
independent increments and

(41) P{x(u) < x} = E e-)u (!) H (x)
n=o n

where Hn(x) denotes the n-th iterated convolution of H(x) with itself; Ho(x) = 1
if x > 0 and Ho(x) = 0 if x < 0. If a denotes the average service time and 4'(s),
the Laplace-Stieltjes transform of H(x), then p = Xa and c1(s) = X[1 - (s)].

In this case the distributions and the limiting distributions of q(t) and a(t)
are given by (32), (35), (25), (36), (37), and (38).
EXAMPLE 3. Theory of dams (cf. D. G. Kendall [5], P. A. P. Moraii [7],

and L. Takacs [14]). Consider a dam (reservoir) with infinite capacity and
suppose that water is flowing into the dam in accordance with a random process.
Denote by x(u) the total quantity of water flowing into the dam in the interval
(0, u]. Suppose that {x(u), 0 < u < } is a separable stochastic process with
stationary independent increments and that almost all sample functions are
nondecreasing step functions which vanish at u = 0. Suppose that the release
is continuous at a constant unit rate when the dam is not empty. Denote by
71(t) the content of the dam at time t, and by a(t) the total time in the interval
(0, t) during which the dam is empty. If 7(0) = 0, then the distributions of 11(t)
and a(t) are given by (39) and (40) respectively.
Now I should like to mention two examples for input processes of this type.
(i) For x > 0,

(42) P{x(u) < XI = e-yyu-1 dy

where u is a positive constant. Then p = I/I and b(s) = log (1 + (s/,[)).
(ii) For x > 0,

1 X/,U2
(43) P{x(u) < xl = y-J e'14Uy3/2 dy.

Theii p = oo anid 4(s) = sl/2.
EXAMPLE 4. 7heory of mathematical risk (cf. C. 0. Segerdahl [8]). Suppose

that a company deals with insurance and in the time interval (0, u] receives
the gross risk premium u, and the total claim in the time interval (0, u] is x(u)
where {x(u), 0 < u < ocI is a separable stochastic process with stationary,
independent increments almost all of whose sample functions are non-
decreasinig step funietionis which vanish at u = 0. Deniote by -y(u) the risk
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reserve at time u. If 7y(O) = x, then y(u) = x + u -x(u). For x > 0, denote
by Ox the time when y(u) becomes 0 for the first time, that is, OA is the time
when the risk reserve becomes depleted. The distribution of O. is determined by

(44) P{Of> t} = P{ sup [x(u) - u] < x},

and the right-hand side of (44) is given by (32). If E{x(u)} = pu and p > 1,
then O. is finite with probability 1, whereas if 0 < p < 1, then there is a positive
probability that Ox = oo, that is, that the risk reserve will never be depleted.

If the insurance company deals with whole-life anniuities, then the risk
reserve can be expressed as oy(u) = x + x(u) - u where x is the risk reserve
at time u = 0 and the process {x(u), 0 < u < oo } has similar properties to the
above one. Now if Ox denotes the time when -y(u) becomes 0 for the first time,
then for 0 < x < t we have
(45) P{6z > t} = P{ sup [u - x(u)] < X,

0<u<t

and the right-hand side of (45) is given by (25), or also by (38), for t = x.

6. A random walk process

This section is independent of the preceding ones and illustrates that often
very simple combinatorial arguments yield useful results in the theory of
stochastic processes.

Suppose that a particle performs a random walk on the x-axis. Starting at
x = 0 in each step the particle moves a unit distance to the right or a unit
distance to the left with probabilities p and q respectively (p + q = 1,
O < p < 1). Suppose that the successive displacements are independent of each
other. Denote by q,n the position of the particle after the n-th step; ?lo = 0.
We have

(n \ n+x n-
(46) P 7n = x} = +) p 2 q 2

2

for x = n, n - 2, * - -n + 2, -n.
If we suppose that the displacements of the particle occur at random times

in the time interval (0, oc), and v(u) denotes the number of steps taken in the
time interval (0, u], then x(u) = 1 is the position of the particle at time u.

We are interested in the investigation of the stochastic process {x(u),
O < u < oo } in the case when {qnl} and {v(u)} are independenit and with prob-
ability 1, v(u), 0 < u < oo, increases only in jumps of magnitude 1.

In the particular case when {v(u), 0 < u < oc} is a Poisson process of con-
stant density and p = q = 2 by using analytical methods, G. Baxter and M. D.
Donsker [1] found that

(47) P{ sup x(u) < a} = 1- Px(u) = a} du
a<isat

whenever a is a positive integer.
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In this section we shall find in an elementary way the distribution of
supo<,.<t x(u) and the joint distribution of supo<u<t x(u) and info<.f<t x(u) for
the general process.
The following theorem is a generalization of (47) for an arbitrary process

{v(u),O < u < X}.
THEOREM 7. If p = q = 2 and a is a positive integer, then

(48) P{ sup x(u) < a} = P{-a < x(t) < a}
O<u<t

PROOF. First,
(49) P{ sup x(u) > a and x(t) > a} = P{x(t) > a}

O<u<t

evidently holds. Second, we have
(50) P{ sup x(u) > a and x(t) < a} = P{ sup x(u) > a and x(t) > a}

O<u<t O<u<t

= P{x(t) > a}.

In proving (50) let r be the first value of u for which x(u) = a. If we reflect
the sample curve for u > r in the line x = a, then we shall not change the
probabilities because the changes in x(u) after 7 are equally likely to be positive
or negative and are independent of the changes before T. This implies (50). If
we add (49) and (50), we get P{ supO<u<t x(u) > a}, whence (48) follows.
The following theorem generalizes (48) further for arbitrary p.
THEOREM 8. If a is a positive integer, then

(51) P{ sup x(u) < a} = P{x(t) < a} -(P) P{x(t) < -a}.
O<u<t q

PROOF. First we shall prove that for x <a,

(52) P{fr < a for r = 0, 1, nandiin x}

= P {71n =x -, (p) P {_ = x - 2a}

where the distribution of 77n is given by (46).
Formula (52) can be proved as follows. If p = q, then {77n, n = 0,1, 2, * }

describes the path of a symmetric random walk. By applying the reflection
principle, we get
(53) P{fir< a for r = 0, 1, n and 1n =X}

= P{,n = xI - P{$n, = x - 2a}

where now the probabilities on the right-hand side are given by (46) with
P = q = .1. In the symmetric random walk each favorable path {X7o, t7, * ,7n
has probability 1/2n, and in the general case, each such path has probability
pI(n+x)qI(f-x). Accordingly, if we multiply (53) by 2npJ(n+x)q1(n-z) and use the
general notation (46), we get (52).
Summing (52) over x < a, we obtain
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(54) P{t1r < a for r = 0, 1, ,n} = P{rq. < a}P- Kn<-a}

If we multiply (54) by P{v(t) = n} and add for n = 0, 1, 2, * , then we get
(51) which was to be proved.
REMARK 3. In the particular case where {v(u), 0 < u < m} is a Poisson

process of density X, we have

(55) P{x(u) = k} = e-xu (_) Ik(2Xp1/2q1/2u)

for k = 0, +1, i2, * , where Ik(X) is the modified Bessel function of order k
defined by

(56) Ik(X) = . (x)+k
1=oj!(j + k)!

for k > 0 aid Ik(X) = Ik(X).
If {v(u), 0 < u < oo} is a Poisson process of density X and we use Ik1(U) -

Ik+l(U) = 2kIk(u)/u, then we can prove easily that (51) can be written in the
form (47).

Finally we shall find the joint distribution of supo<u <t x(u) and info <, <t x(u).
THEOREM 9. If a and b are positive integers, then

(57) P{-b < x(u) < a for 0 < u < t}

- (-P)(a+b)k P{2(a + b)k-b < x(t) < 2(a + b)k + a}k=-X q2

pk=ao k
P{-2(a + b)(k + 1) + b < x(t) < -2(a + b)k - a}.

PROOF. In the particular case where p = q we have for -b < x < a,

(58) P{-b <Km < a for r = 0, 1, ,n aidi?1 = x}

= E [P{-1n = x + 2(a + b)k}-P{-q. = x-2(a + b)k-2a}]
k=-oo

where the distribution of 1n is given by (46) with p = q = 2. This follows from
the theory of random walks. (Cf., for example, L. Takacs [10], theorem 5.) In
the particular case where p = q = -, each favorable path {no, qi, *, i} has
probability 1/2n, and in the general case each such path has probability
pi(n+x)qi(nx-). Accordingly, if we multiply (58) by 2npi(n+x)qI(n-x), and if we use
the general notation (46), then we obtaini in the general case

(59) P{-b < n7 < a for r=0, 1, , n adn, = x}
X /pp-(a+b)k= q = x + 2(a + b)k}

- kE-co (p)(a+b)k P{71n = x -2(a + b)k - 2a}.



446 FIFTH BERKELEY SYMPOSIUM: TAKACS

Helce,
(60) Pf{-b < q, < a for r = 0,1, *n}

xI/p\-(a+b)k

p) P{2(a + b)k- b < 77n < 2(a + b)k + a'
k=-cc \q/I
- = Vak-) Pf-2(a + b)(k + 1) + b < -tm < -2(a + b)k - a}.
k=-cc q\J/

If we multiply (60) by P{P(t) = n} aiid add for n = 0,1, 2, * * ,then we get
(57) which was to be proved.
REMARK 4. In the particular case where p = q = 4, (57) reduces to

(61) P{-b < x(u) < a for 0< u < t}

= , (-1)kP{(a + b)k-b < x(t) < (a +b)k + a}.
k =-to

We also niote that if instead of (58) we use the following equivaleilt forimiula
(cf. L. Takacs [10], theorem 5),

(62) P{-b < 7,1 < a forr = 0,1, ,naind 17, = x}

2 a+b / k7r \n . k7ra kwr(a-x)
(a + b) k=O ' a + b) a + b a+ b

then (61) caIn also be written in the following form:

(63) P{-b < X(u) < a for 0< u <}
k7ra k_r

1 a±b-1 k7r 1 bCos +
(a + b) k=1 a + b) Si+ll b

a ± b

where Gj(z) = E'{z(t)} is the genlerating functioin of the raildom variable v(t).
If {v(u), 0 < u < o} is a Poisson process of density X, then Gt(z) = e-xt('-z).
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