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1. Introduction

It has long been known that the convolution of two singular univariate
distributions can be absolutely continuous, and that this can hold even if the
distributions are concentrated on sets of Hausdorff dimension zero. However,
the problem is more complicated if the convolvants are required to be identical.
What is done in this paper is to give simple examples of convolutions of

singular distributions, even concentrated on sets of Hausdorff dimension zero,
which are absolutely continuous. Furthermore, if we define the "dimension"
of a distribution to be the smallest Hausdorff dimension of a set with prob-
ability one and the distribution is singular, and 00 if the distribution is absolutely
continuous, then if monotonically nondecreasing functions f, g, h are given from
(0, m) to [0, 1] U {Xo}, such that for each t, f(t) < h(t) and g(t) < h(t), there
exist infinitely divisible distributions F and G such that the dimension of F'
is f(t), the dimension of G' is g(t), and the dimension of F' * G' is h(t). Further-
more, the measure in the L6vy-Khintchine representation of F is purely dis-
crete, and that of G is purely singular. This generalizes results of Tucker [4]
and Rubin [3]. We can even insist that the distributions F', G', F' * G' are
pure, that is, there is no nonzero component of smaller dimension.

2. An example

For our first example, let

(1) Xi = L 2-iAij, i = 1, 2,
jl1

where the Aij are independent zero or one random variables and P(Aij = 1) =
pj. Then it is known that the distribution of Xi is absolutely continuous if and
only if E_ (pi - 1)2 <0. We now show that if E (pj-2)4 <0, the distribu-
tion F of X1 + X2 is absolutely continuous.
We first observe that, since X1 + X2 is a sum of independent discrete random

variables, its distribution is pure [5]. Hence, for F to be absolutely continuous,
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it is necessary and sufficient for F not to be orthogonal to Lebesgue measure.
If we now let Gq be the distribution of Xl + X2 (mod 2-a), this condition is
equivalent to Gq and Lebesgue measure on (0, 2-q) being mutually absolutely
continuous for some q, or dGq/dHq is nonzero almost everywhere [Hq], where
Hq is 2q times Haar measure on (0, 2-q). Let q be so large that if r > q,

p<pr < 2. Let Er(a) be the event Alr + A2r = a (mod 2). Then P(Er(O)) -
= 2(p, -2)2. Also, let

(2) X1+ X2= 2-iBi.
j=O

If there is no carry at the r-th place, Br = 1 in the event Br(1), and if there is
a carry, Br = 1 in the event Br(O). Consequently,
(3) P(Br = llAr+i,j; i = 1, ;j = 1, 2) = 2 h 2(pr -)2,
and hence

(4) jP(B, = lIBr+, .**, B,) - I < 2(Pr- 2)2
Consider now the random variables

drsGq
(5) Ur = log drnHq
where drs denotes that the derivatives are taken on the field generated by
Br,* B,. From (4) it follows that

(6) 0 > E(Ur,. - Ur+i,lBr+i, * *, B.) 2 -9(pr--)4
(7) V(Ur, - Ur+,,,IBr+i, *** Bs) < -20(pr-2-
Now we can use the well-known limiting arguments to establish that appro-
priate interpretations of (6) and (7) hold as s - oo. From (6) it then follows that

(8) _ E(Ur,c - Ur+l,.olBr+l, ..)
q+1

exists with probability one, and from (7) that

(9) Ur,,, - Ur+l,o - E(Ur,oo - Ur+l,.lBr+17 ..)
q+1

exists with probability one. But this proves the nonorthogonality of Gq and
Hq, q.e.d.

3. Definitions and assumptions
The previous example does not prove anything about Hausdorff dimension

because ([1], [2]) pn- 1" is sufficient to guarantee that the distribution of Xi
is of dimension one. A somewhat more complicated example, but with easier
mathematics, gives results in this direction and will form a basis for the more

detailed results.
Let bo < bi < ... < bn < ... be an increasing sequence of integers, bo = 0.

Then the integers from bi-, + 1 to bi, inclusive, form the i-th block Bi of inte-
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gers. Throughout the rest of the paper we will assume that the random variables
under consideration are of the form

(10) X=3 E E Yjk2 k,
i-i j=1 kEBi

where the l-'s are indepeiidenit random variables, each of wlhich is zero or onie
with probability 1, and the Fi's are indepenidenit of thc N's. It will nlot always
be assumed that the N's are indepenident of each other.
We will also make some simplifying assunmptions. Let r i be the lenigth of Bi.

Then let us assume

(A) lill b2= xb2i-1

(B) log Nj+j 0 a.s

(C) Z exp (-2ri)ep< ,

(l)) Jiml1AN2i > 0 a.s.

Also let pi = 1?2i/1 2i+1.
Let us recall that thlC a-Hausdorff measure of a subset S of a metric space

is defined by

(11) Ha(S) = linm iuif {jE (Ei)a: S C U Ei and 6(E,) < e for all 4.
e-A Li=l iJ

Clearly, if Ha(S) < X and 03> a, HO(S) = 0, and if Ha,,(S) > 0 anid < a,
Il(S) = x. If we set H0,(S) = x anid H:¢(S) = 0, the cut poinit X between the
O's and o 's of H is called the Hausdorff dimension of S. We call a support of
a measure any set wl-ose comiplemenit has measure zero anid the Hausdorff
dimeinsioin of a measure the niniinmum Hausdorff dimenisioni of a support. It ean
be showvn that conivolutioni does not decrease Hausdorff dimension.

4. The auxiliary theorem

AWTe may generalize the results of [3] to obtaini the following theorenm.
THEOREM. Under the assumptions (A)-(D), the distribution F of the ranitdom

variable X of (10) is absolutely continuous if and only if lim Ni > 0 a.s., and its
dinension is a if and only if a is the supremnum of A, wrhere 0 e A and if x > 0,
x c A if and only if for each positive y < x,

P({i: Ni = 0 and bi-i/bi < y}- is finite) > 0.

Firom (I3) it follows that with probability onie for i sufficiently large, the
first (1 - E) of the i-th block. of X will be zero unless Ni > 0. From (C) it
follows that, with probability one for i sufficiently large, the first .8 of the i-th
block will not be zero if Ni > 0. Thus, if E < .2, the first (1 - e) of the i-th block
of X being zero is a sequence of events equivalenit to the sequence Ni = 0.

Let us define Ki = niii (1, Ni),
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Ki
(12) Y E Yjk2k

iER j-1
and

Ni
(13) Z = E E Yjk2k-.

iER j=Ki+l kEBi

Then Y and Z are independent given {i: Ni = O} n R. Consequently, if we
can find a countable family of subsets of R which form a set of probability one
on each of which F is absolutely continuous, or on a set which has positive
probability F and dimension of at least y, theii the same is true for F. However,
it is sufficient to establish the result for the distribution of Y.

First let us look at the case of absolute continuity. Let R be the set of positive
integers. If F is absolutely continuous, any event of Lebesgue measure zero
must have probability zero. Consider the event that infinitely many blocks
have their first .8 identically zero. From (C) it follows, just as before, that this
event has probability zero. But this latter condition has already been noted to
be probabilistically equivalent to the finiteness of {i: Ni = O}-

Conversely, let P({i: Ni = O} finite) = 1. Let 8 be the set of finite sets of
positive integers. If S e 8, then for some m, Ni > 0 for all i > m. Consequently,
Y has an absolutely continuous distribution given {i: Ni O} = S. Therefore,
by our previous remark, F is absolutely continuous.

Let us now look at the problem of Hausdorff dimension. First let us show
that the a in the statement of the theoriem is an upper bound. Let /3 > a and
let f be a positive number. Let S = {i: Ni = 0 and bi-l/bi < d}. Then S is
infinite with probability one. Consequently, if

(14) T = {i: the first (1 - e) of the i-th block is 0 and bi-1/bi < /3}

T is infinite with probability one. Let

(15) Ci = {bi_1 + (1-

where {x} denotes here the smallest integer not less than x, and let

(16) Eim = [2-bi-m, 2-bi-m + 2-ci).

Since T is infinite with probability one, it follows that if

(17) Qi = 2-bi-ij 0
that

(18) FJ = U {Ei,,,: i > J, bi-1/bi < /, and 1 < m < Mli2

has probability one for all J. By (11),

(19) H(n FJ) < E 2 i,M,i <F_ 2Qi-2vbi,
J bi/bi<i=J

i>J

where y= 1-(-//) + e-y((1//) - 1). Since bi increases more than exponen-
tially fast from (A), if Qi goes to infinity sufficiently slowly (say exponentially),
H,(nf FJ) = 0 if 1 < 0. Thus, the dimension d of F satisfies
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1 + E(/3 l

Since e is an arbitrary positive number and , an arbitrary number exceeding a,
d < a.
To prove the converse, let R = {i: bi-1/bi < y}. Consequently, if 8, the set

of all finite subsets of {i: Ni = O} n R has positive probability, the dimension
of F is at least the dimension of the distribution of U. But by the results of
Billingsley [1] and Chatterji [2], this dimension is at least y. The conclusion
then follows easily.

If we examine the proof carefully, we find we can get the following additional
results:
COROLLARY 1. Under assumptions (A)-(D), F has an absolutely continuous

component if and only if P(lim Ni > 0) > 0.
COROLLARY 2. Under assumptions (A)-(D), if P({i: Ni = 0 and bi,l/bi < y'

is finite) is zero or one for each y with at most one exception, every set of positive
probability has the same dimension as a support.

5. Further examples and the principal theorem

From the theorem and corollaries, it is clear that we merely have to select
the distribution of the Ni so that there is a suitable collection XC of subsets of
the integers so that for K e xC the behavior of {i: Ni = O} n K is probabi-
listically different from that of {i: N1i + N2i = n}( K.
EXAMPLE 2. Let the Ni be independent, P(Ni = 0) = pi, P(Ni = 1) =

1 - pi. Then F is singular if and only if E pi = oo, while the convolution F * F
is singular if and only if E pi = o-
We may even obtain more. For let bn = n! Then when F is singular, it is

even zero-dimensional. Also, if we let b2n = (2n)!, b4n+1 = 2 (4n)!, b4n+3 =
33.(4n + 2)!, and

(20) , P2n <o°

(21) {~I P4n+3 °
4Pn+3 < 0

(22) 4pn+1 <°°

we have F is '-dimensional, F * F is '-dimensional, and F * F * F is absolutely
continuous.
To obtain our more detailed results, let us specify the b's.
(E) If n > 2, let b2n =(2n)!; if 2k < n < 2k+l, k > 0, let b2n+1=

[(2n) !- 2k/(n - 2k)] + n.
Then for n > 5, rn > (n -1)/2; therefore, (C) is satisfied. Also, if 2n > 6,

(23) b2n_1 = (2n - 2)!2k/(n - 1 - 2k) + n - 1 < (2n - 2)!(n - 2)
+ (n - 1) < (2n - 1)!,



420 FIIT'H BERKELEY SYMPOSIUM: RUBIN

so that b,2n/b2n_1 > 2n, and (A) is satisfied. For each odd integer n > 2 let P(pn)
be the largest integer x such that 2x < n, and let At(n) = (n - 2P(n))/2P(n). We
observe that ,6(n) > pn > 4,(n) - 1/(2n - 1)!. Consequently, in theorem 1 we
may replace b2n/b2n+± by 4 (n).
What we shall do now is to let each Ni be a sum of finitely maniy Poisson

ranidom variables, all the Poisson variables being independent. Let, for n > 1,
Zn = 2n, z2n = 2zIn +Zln Z3n, = 2z2- + Z2n, aId so on. Then every Zk,, iS evenl,
aniidZk$ zjm uniless k = j, m = n. Also Zkn > n.
Now we shall let Xl(t) and X2(t) have the form (10) where, for XI, the N1i

are indepenident Poisson with mean tXi.. For X2 the situation is more compli-
cated. Let Mli be independent Poisson with mean tiii. Let q be an ideiipotent
function defined on the integers n such that (p(n) is divisible by 3. If i = 2n + 1
and s(n) is not divisible by 3, let N2i = 111. If sp(n) is divisible by 3 and
i = 2n + 1, and if q(n) = j, let N2i = 2j+i. If i is even but not equal to any
Zkn, let N2i = Mi. If i is even and i = Zkn, let N2i = Jlli + N2n. In other words,
each N is a sum of at most two indepenidenit l'oisson variables, but each M
appears in an infiniite number of N's.

This is done in order to guarantee that the lUvy-lhiintchiiie representationi
of X2(t) is purely singular. Tlhe reasoni for the complications for (p(n) divisible
by 3 will appear later.
We now commence the proof of the followiiig p)rincil)al theoremn.
PRINCIPAL THEOREM. Let f, g, and h be three mnoitotone nondecreasintg futnic-

tions from (0, 0o) to [0, 1] U {x0} such thatf < h, g < h. Thent there exist infinitely
divisible distributions F and G so that the L&vy-Khintchine representation of F is
purely discrete, that of G is purely sintgular, and the dimensions of Ft, Gt, alln
Ft * G are f(t), g(t) and h(t).
The idea of the proof is to choose A, u, anid q in the precedinig discussiotn so

that theorem 1 gives the desired results, except that conditioin (1B) is violated,
and theii to modify them so that conditioni (1B) will be satisfied. To show that
this modification can be donle, notice that conditioni (B) follows fromii X,, + 4, =
0(n), and if we define X' = min (n,,, n), 4,' = miii (A,,, n), the convergenice or
divergence of series of the form ES e-ten will be e(quivalent to that of
,nES e-t, where a- is X, A, or X + u.
The structure of the proof is as follows. If the param--eters are choseni so condi-

tion (D) is satisfied, 'i: Ni = 0 and i even) is finiite. T'o do this, let us choose
A2n = ,L2n = 2n. Let us also make A2n+I 2n + 1 if p(n) = 1 (mod 3) and
2+1= 2n + 1 if (n) 2 (mod 3). Tlhus the i's of the formll 2k + 1 with
5y(l) 2 1 (mod 3) will contribute nothinig to the dimeinsioni of Gt, anid those
with (p(k) = 2 (mod 3) will contribute nothiilg to the dimenlsioll of Ft, and oinly
those with p(k) divisible by 3 need to be considered in the dimension of F' * GI.
Notice also that if Qi, = {k: Ni,2k+1 = 0 and b2k/b2k+l < y and 6o(k) _ j (mod 3)},
the dimension of F' is the minimum of that determined by Qll and Q13, ancd
that of Gt by Q22 and Q23, and for Ft * Gt by Q13 n Q23. Conse(lueiitly, if we can
construct the X's, 4's, ancd q so that consideratioil of Qll maikes the dimenision
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of Ft take the value f(t), Q22 makes the dimension of GI equal g(t), and Q13, Q23,
and Q,3 n Q23 cause the dimensions of Ft, Gt, and Ft * Gt all to assume the
value h(t). The proofs of all but the last part closely follow [3], and will now
be given.

It is enough to show how the dimension of Ft can be made equal to f(t) by
suitably clhoosing X2k+1 for r(k) 3 (]nod 3). For each binary rational r, let

(24) Tr = {1.(k):1 (mod 3) and 4(1(k) = r.
If r < 1, let 7(r) = inif 't: f(t) > r}, so that if r = 1, T(r) = inf {t: f(t) =c}.

If r(r) = vo, set 77(r, m) = 0; if r(r) = 0, set 77(r, in) = m; if f(r(r)) > r, set
77(r, in) = (log m + 2 log (1 + log m))/T(r); arid if f(r(r)) < r, set 4(r, in) =

log m,/T(r). Theii if k is the m-th value for which 4((k) = r and (p(k) =_ 1 (mod 3),
set t(2k + 1) = 71(r, m). Thus we have for every rational number r and every
t > 0,

(25)) 57,t e' 2-
< (k) 1 (mnod 3)

4, (k) =r

is finite precisely when f(t) > r. If the ¢'s were to be used as X's, it would imme-
diately follow from theorem 1 that the dimenision of F cannot exceed f(t), since
for anly r > f(t)
(26) 1'( Ac:'1,2k+l = 0 anid 4'k = r4 is finite) 0.

Now let T = 't: t rational or f is discontinuous at t and t > 0>, and let
ti, , t, ... be the elements of T. Also let ri, * , rn, * be an enumeration
of the binary rationals. Define C,, to be the smallest number so that

(27) Ctk - log 6(tk, -,,) > It

for all k < n for which 6(t1,, r,) is finite. Now if q(k)1= 1 (mod :3) alnd ,6(k) = r,,,
let

(28) X2k+1 = C,, + -(2k + 1).
Now let u be any positive number anid let e > 0. Choose t E T so that t < it

and f(t) > f(u) - e. Then by (27) and (28),

(29) E I)(VI ,2k+1 = 0) < X -
p(k) -1 mod 3

(/(k) <f(t)

Therefore F' is of dimension at least f(u) - e, q.e.d. 'Note that condition (B)
may not be satisfied, but we have already shIownI that tiis can be remedied.
A similar calculation holds for A2k+1 for p(k) - 2 (mod :3).
The more difficult case is that of 112k+1 for <(A) divisible by 3. I se the above

procedure to define X2k+l for those k's with f replaced by h anid "-I (mod 3)"
replaced by "divisible by 3."

Let ki be the 2i-' value n with +'(n) = r aiid ,c(n) divisible by 3, arid for
those k's with 4'(k) = r and 50(k) divisible by 3 between kh and kj+l, set
q(2k + 1) = 2kj + 1 and A2k+l = X2,+l, where s is the j-th iiunber u with
4(u) = r anid (p(u) divisible by 3. Now if the dimension exceeds r, the previous
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proof certainly remains valid since N1i + N2i > N1i. Also the previous proof
that Ft has dimension < f(t) now shows that the dimension is < h(t) for both
Ft and GI.
Now let r be a binary rational and h(t) < r. If k is the m-th number with

(k) =_ 0 (mod 3) and 4'(k) = r, for sufficiently large m we have

(30) exp (- tX2k+1) > c/m.
Conse(uently, the probability that some N1,2k+1 is zero for such a k with 2i-1 <
m < 2i is

2,-1
(31) Rj >

I

II (1-c/m) > v > 0,
m = 2i-1

for m sufficiently large. Now the probability that all N2,2k+l are zero for those
k's is, since they are all the same, the j-th element of a divergent series. Conse-
quently, it is almost certain that for infinitely many k's with p((k) 0_ (mod 3)
and A(k) = r, N1,2k+1 + N2,2k+1 = 0, and hence dimension (Ft * Gt) < h(t).
This concludes the proof of the theorem.

6. Concluding remarks

It is clear that the principal theorem can be generalized to include n con-
volvants, some of which may be specified to have a discrete representation and
some a singular representation. It is hoped that some clever argument can be
found to simplify the detailed maniipulation required by the author to obtain
the principal theorem.
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