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1. Introduction

It has long been known that the convolution of two singular univariate
distributions can be absolutely continuous, and that this can hold even if the
distributions are concentrated on sets of Hausdorff dimension zero. However,
the problem is more complicated if the convolvants are required to be identical.

What is done in this paper is to give simple examples of convolutions of
singular distributions, even concentrated on sets of Hausdorff dimension zero,
which are absolutely continuous. Furthermore, if we define the ‘“‘dimension”
of a distribution to be the smallest Hausdorff dimension of a set with prob-
ability one and the distribution is singular, and « if the distribution is absolutely
continuous, then if monotonically nondecreasing functions f, g, & are given from
(0, ) to [0,1] U {}, such that for each ¢, f(t) < h(t) and g(f) < h(t), there
exist infinitely divisible distributions F and G such that the dimension of F*
is f(t), the dimension of G* is ¢(t), and the dimension of F* * G is k(). Further-
more, the measure in the Lévy-Khintchine representation of F is purely dis-
crete, and that of G is purely singular. This generalizes results of Tucker [4]
and Rubin [3]. We can even insist that the distributions F¢, G¢, F* = G* are
pure, that is, there is no nonzero component of smaller dimension.

2. An example
For our first example, let

1) X = il 2-iA;, i=1,2
J=

where the A;; are independent zero or one random variables and P(4;; = 1) =
pj. Then it is known that the distribution of X is absolutely continuous if and
only if ¥ (p; — 3)? < . We now show that if > (p; — 3)* < =, the distribu-
tion F of X, 4+ X, is absolutely continuous.

- We first observe that, since X; + X, is a sum of independent discrete random
variables, its distribution is pure [5]. Hence, for F to be absolutely continuous,
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it is necessary and sufficient for F not to be orthogonal to Lebesgue measure.
If we now let G, be the distribution of X; + X, (mod 2-9), this condition is
equivalent to G, and Lebesgue measure on (0, 2-9) being mutually absolutely
continuous for some g, or dG,/dH, is nonzero almost everywhere [H,], where
H, is 27 times Haar measure on (0,279). Let g be so large that if r > g,
1 < p, < £. Let E.(a) be the event A;, + Ay = a (mod 2). Then P(E.(0)) —
1 = 2(p, — )% Also, let

2) X+ X, = iOZ_ij.
i=

If there is no carry at the r-th place, B, = 1 in the event B,(1), and if there is
a carry, B, = 1 in the event B,(0). Consequently,

3) PB,=1A,p;t=1,---;5=1,2) =%+ 2(p. — 3)?
and hence
(4) IP(BT = 1|B7+17 ) BS) - %1 S 2(pr - %)2-
Consider now the random variables
_ d.G,
(5) U1 = log d,-qu’

where d,, denotes that the derivatives are taken on the field generated by
B,, -+, B,. From (4) it follows that

(6) 0 2 E(Ur,s - Ur+1,slBr+1y R Bs) _>_. _g(pf - %)4)
(7) V(Ur.s - Ur+1,8lBr+l; e 7Bs) < _20(pr - %)4-

Now we can use the well-known limiting arguments to establish that appro-
priate interpretations of (6) and (7) hold as s — «. From (6) it then follows that

(8) Z E(U'r.ao - U1+1,en|Bf+1) o )
a1
exists with probability one, and from (7) that
(9) gl Ur,nc - Ur+1,oo - E(Ur,oo - Ur+1,=o‘Br+ly * ')
q

exists with probability one. But this proves the nonorthogonality of G, and
H, q.ed.

3. Definitions and assumptions

The previous example does not prove anything about Hausdorff dimension
because ([1], [2]) p. — % is sufficient to guarantee that the distribution of X;
is of dimension one. A somewhat more complicated example, but with easier
mathematics, gives results in this direction and will form a basis for the more
detailed results.

Let by < by < --+ < b, < --- be an increasing sequence of integers, b = 0.
Then the integers from b;_; + 1 to b;, inclusive, form the 7-th block B; of inte-
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gers. Throughout the rest of the paper we will assume that the random variables
under consideration are of the form

o N;
(10) X =2 2 2 Yp2¥

i=1;=1%EB:
where the 17s are independent random variables, each of which is zero or one
with probability %, and the }’s are independent of the N’s. It will not always
be assumed that the N'’s are independent of each other.

We will also make some simplifying assumptions. Let »; be the length of B..

Then let us assume

(A) lim b—l;ii—l =,
®) PENws 0 as,
(©) 2 exp (—310) <,
(D) lim No; > 0 as.

Also let p; = r9:/roip1.
Let us recall that the a-Hausdorff measure of a subsel S of a metric space
is defined by

(11 H,(S) = lim inf i S(E)x: S © U I, and (k) < efor all z}
0 =1

Clearly, if Ho(S) < = and 8 > o, Hg(S) = 0, and if H,(S) > 0 and B8 < «,
Ig(8S) = . If we set H,(S) = = and H,(S) = 0, the cut point A between the
0’s and «=’s of H is called the Hausdorff dimension of S. We call a support of
a measure any set whose complement has measure zero and the Hausdorff
dimension of a measure the minimum Hausdorff dimension of a support. It can
be shown that convolution does not decrease Hausdorff dimension.

4. The auxiliary theorem

We may generalize the results of [3] to obtain the following theorem.

TueorEM. Under the assumptions (A)—(D), the distribution F of the random
variable X of (10) is absolutely continuous if and only if lim N; > 0 a.s., and its
dimension 1s « if and only if « is the supremum of A, where 0 € A and if x > 0,
x € A if and only if for each positive y < x,

P({i: N; = 0and b;—1/b; < y} is finite) > 0.

From (B) it follows that with probability one for ¢ sufficiently large, the
first (1 — ¢) of the ¢-th block of X will be zero unless N; > 0. From (C) it
follows that, with probability one for ¢ sufficiently large, the first .8 of the ¢-th
block will not be zero if N; > 0. Thus, if e < .2, the first (1 — ¢) of the ¢-th block
of X being zero is a sequence of events equivalent to the sequence N; = 0.

Let us define K; = min (1, N,),
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K
(12) Y= 3% > Ya2™
i€k =1
and
© N;
(13) Z=3% X X Y2+

1€ER j=Ki+1 kEB:
Then Y and Z are independent given {: N, = 0} M R. Consequently, if we
can find a countable family of subsets of B which form a set of probability one
on each of which F is absolutely continuous, or on a set which has positive
probability F and dimension of at least y, then the same is true for F. However,
it is sufficient to establish the result for the distribution of Y.

First let us look at the case of absolute continuity. Let R be the set of positive
integers. If F is absolutely continuous, any event of Lebesgue measure zero
must have probability zero. Consider the event that infinitely many blocks
have their first .8 identically zero. From (C) it follows, just as before, that this
event has probability zero. But this latter condition has already been noted to
be probabilistically equivalent to the finiteness of {i: N; = 0}.

Conversely, let P({{: N; = 0} finite) = 1. Let 8 be the set of finite sets of
positive integers. If S € 8, then for some m, N; > 0 for all £ > m. Consequently,
Y has an absolutely continuous distribution given {Z: N; = 0} = 8. Therefore,
by our previous remark, F is absolutely continuous.

Let us now look at the problem of Hausdorff dimension. First let us show
that the « in the statement of the theorem is an upper bound. Let 8 > « and
let € be a positive number. Let S = {£: N; = 0 and b,_,/b; < 8}. Then § is
infinite with probability one. Consequently, if

(14) T = {i: the first (1 — ¢) of the ¢-th block is 0 and b,_,/b; < 8},
T is infinite with probability one. Let

(15) ¢i = {bi+ (1 — Or,
where {z} denotes here the smallest integer not less than x, and let
(16) Eim = [27bvm, 2= b 4 2703,
Since T is infinite with probability one, it follows that if
(17) Qi = 2-M; — w0,
that
(18) Fy=U {Em:t>J,biy/b;<pB,and 1 <m < M}
has probability one for all J. By (11),
(19) H(NF)< ¥ 270, < 3 2Qi-2,
J b;_xi/gi.](B i=J

where 3 = 1 — (v/8) + ey((1/8) — 1). Since b; increases more than exponen-
tially fast from (A), if @, goes to infinity sufficiently slowly (say exponentially),
H,(Ns F;) = 0if n < 0. Thus, the dimension d of F satisfies
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B
STF -1
Since € is an arbitrary positive number and 8 an arbitrary number exceeding «,
d < a. -

To prove the converse, let B = {z: b,_1/b; < y}. Consequently, if 8, the set
of all finite subsets of {Z: N; = 0} N R has positive probability, the dimension
of F is at least the dimension of the distribution of U. But by the results of
Billingsley [1] and Chatterji [2], this dimension is at least y. The conclusion
then follows easily.

If we examine the proof carefully, we find we can get the following additional
results:

CoroLrLARY 1.  Under assumptions (A)—-(D), F has an absolutely continuous
component if and only if P(im N; > 0) > 0.

CoROLLARY 2. Under assumptions (A)—(D), if P({Z: N; = Oand b,_,/b; < y}
is finite) is zero or one for each y with at most one exception, every set of posttive
probability has the same dimension as a support.

d

6. Further examples and the principal theorem

From the theorem and corollaries, it is clear that we merely have to select
the distribution of the N; so that there is a suitable collection X of subsets of
the integers so that for K € X the behavior of {¢: N; = 0} N K is probabi-
listically different from that of {z: Ni; + N.; = 0} N K.

ExampLE 2. Let the N; be independent, P(N; =0) = p;,, PWN:=1) =
1 — p.. Then F is singular if and only if 3 p; = «, while the convolution F * F
is singular if and only if 3" p? = .

We may even obtain more. For let b, = n! Then when F is singular, it is
even zero-dimensional. Also, if we let bs, = (2n)!, byuyr = 2-(4n)), banys =
3-(4n + 2)!, and '

(20) Z P2n < ®,
2 Pints = @,

(21) Z pin+3 < ®©,

(22) Z p%n-}l = o,

Y Pl < 0,

we have F is 1-dimensional, F * F is 3-dimensional, and F = F % F is absolutely
continuous.

To obtain our more detailed results, let us specify the b’s.

EBE)If n>2 let by = @n)!; if 28 <n <261 k>0, let bop =
[(@n) 1 28/(n — 2%)] + .

Then for n > 5, r, > (n — 1)/2; therefore, (C) is satisfied. Also, if 2n > 6,
(23) bona=C2n—2)12¢/(n—1—-2)4+n—-—1<Z 2n—2)I(n — 2)

+m—-1)< (2n— 1)
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50 that bsu/bany > 2n, and (A) is satisfied. For each odd integer n > 2 let o(n)
be the largest integer x such that 2= < n, and let y(n) = (n — 2¢™)/2¢m  We
observe that ¢(n) > p. > ¢(n) — 1/(2n — 1)!. Consequently, in theorem 1 we
may replace be,/be..1 by ¥(n).

What we shall do now is to let each N; be a sum of finitely many Poisson
random variables, all the Poisson variables being independent. Let, for n > 1,
Zin = 2", 29n = 27 4 21, 23, = 27 4 25,, and so on. Then every z, is even,
and 2zi, ¥ 2Zjm unless & = j, m = n. Also zx, > n.

Now we shall let X;(¢f) and X,(¢) have the form (10) where, for X;, the Ny,
are independent Poisson with mean ¢\, For X, the situation is more compli-
cated. Let M; be independent Poisson with mean tu;. Let ¢ be an idempotent
function defined on the integers n such that ¢(n) is divisible by 3. If ¢ = 2n -+ 1
and ¢(n) is not divisible by 3, let Ny; = M, If ¢(n) is divisible by 3 and
1 =2n 41, and if g¢(n) = J, let N2y = My, If 7 is even but not equal to any
Zin, let Noy = M. If 7 is even and ¢ = 2z, let No; = M, + N, In other words,
each N is a sum of at most two independent Poisson variables, but each Af
appears in an infinite number of N’s.

This is done in order to guarantee that the Lévy-ILhinichine representation
of X,(t) is purely singular. The reason for the complications for ¢(n) divisible
by 3 will appear later.

We now commence the proof of the following prineipal theorem.

PRrINCIPAL THEOREM. Let f, g, and h be three monotone nondecreasing func-
tions from (0, ) to [0, 1] U {eo} such that f < h, g < h. Then there exist infinitely
divisible distributions F and G so thal the Lévy-Khinichine representation of F s
purely discrete, that of G is purely singular, and the dimensions of I't, G*, and
FtxGtare f(t), gt) and h(1).

The idea of the proof is to choose A, u, and ¢ in the preceding discussion so
that theorem 1 gives the desired results, except that condition (B) is violated,
and then to modify them so that condition (B) will be satisfied. To show that
this modification can be done, notice that condition (B) follows from A, 4+ p. =
O(n), and if we define A\, = min (A\,, n), un = min (u,, n), the convergence or
divergence of series of the form Y ,ese ' will be equivalent to that of
S nesg et where o is \, u, or X + p.

The structure of the proof is as follows. If the parameters are chosen so condi-
tion (D) is satisfied, {¢: N; = 0 and ¢ even} is finite. To do this, let us choose
Nen = pizn = 2n. Let us also make psopn = 2n 4+ 1 if o(n) =1 (mod 3) and
Nng1 = 2n + 1 if ¢(n) = 2 (mod 3). Thus the ¢’s of the form 2k + 1 with
o(k) =1 (mod 3) will contribute nothing to the dimension of G¢ and those
with ¢(k) = 2 (mod 3) will contribute nothing to the dimension of ¥, and only
those with ¢(k) divisible by 3 need to be considered in the dimension of F* * G*.
Notice also that if Q;j = {k: Nz = 0and ba/boxys < y and p(k) = j (mod 3)},
the dimension of F* is the minimum of that determined by Q) and Qs and
that of G* by Q2 and Qe, and for I'* « G* by Qi3 M Q. Consequently, if we can
construct the N's, u’s, and ¢ so that consideration of @ makes the dimension
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of Ft take the value f(¢), Qu makes the dimension of G equal ¢(t), and @3, Qus,
and Qi3 N Q@ cause the dimensions of F¢, G! and F!xG* all to assume the
value k(). The proofs of all but the last part closely follow [3], and will now
be given.

It is enough to show how the dimension of F* can be made equal to f(f) by
suitably choosing A\ry; for ¢(k) = 1 (mod 3). For each binary rational r, let

24) T,= {k: ¢() =1 (mod 3) and ¢ (k) = »}.

If r <1, let 7(r) = inf {: f(t) > r}, so that if r = 1, 7(r) = inf {¢&: () = =}.

If 7(r) = =, set 9(r, m) = 0;if 7(r) = 0, set n(r, m) = m; if f(=(r)) > r, sct
n(r, m) = (logm + 2log (1 4+ log m))/r(r); and if f(=(r)) < r, set n(r,m) =
log m/7(r). Then if k is the m-th value for which (k) = r and ¢(k) = 1 (mod 3),
set ¢(2k + 1) = n(r, m). Thus we have for every rational number 7 and every
t>0,

(25) ot, r) = b ot KD
(k) =1(mod 3)
vik)y=r

is finite precisely when f(t) > r. If the {'s were to be used as N's, it would imme-
diately follow from theorem 1 that the dimension of F cannot exceed f(t), since
for any r > f(1),

(26) P({l: Nygeyn = 0 and ¢, = 7} is finite) = 0.

Now let 7' = {t: t rational or f is discontinuous at ¢ and ¢ > 0}, and let
ty, +++ , ta, - -+ be the clements of T. Also let 7, - -+, 7, - - - be an enumeration
of the binary rationals. Define C, to be the smallest number so that
(27) Cutr, — log0(ti, 1) > n

for all . < n for which 6(¢,, 7,,) is finite. Now if ¢(k) = 1 (mod 3) and (k) = r,,
let

(28) >\2k+1 = Cn + 5"(2]\ + l)

Now let u be any positive number and let e > 0. Choose ¢ € T so that t < u
and f(t) > f(u) — e. Then by (27) and (28),
(29) Z ])(A\71,2k+1 = 0) < =,

ek) =1mod 3

k) <f(t)

Therefore F* is of dimension at least f(u) — ¢ q.e.d. Note that condition (B)
may not be satisfied, but we have alrcady shown that this can be remedied.
A similar calculation holds for pgys for (k) = 2 (mod 3).

The more difficult case is that of pary for ¢(k) divisible by 3. Use the above
procedure to define Az for those k’s with f replaced by h and “= 1 (mod 3)”
replaced by “divisible by 3.”

Let k; be the 2—! value n with y(n) = » and ¢(n) divisible by 3, and for
those &’s with ¢(k) = r and (k) divisible by 3 between k; and kj, set
g2k + 1) = 2k; + 1 and pzrp1 = Aesyr, where s is the j-th number u with
Y(w) = r and ¢(u) divisible by 3. Now if the dimension exceeds 7, the previous
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that F* has dimension < f(f) now shows that the dimension is < A(t) for both
Ftand G

Now let r be a binary rational and h(t) < r. If k is the m-th number with
¢(k) = 0 (mod 3) and ¢ (k) = r, for sufficiently large m we have
(30) exp (— thagt+1) > ¢/m.

Consequently, the probability that some N oy is zero for such a k with 2171 <
m < 2718

proof certainly remains valid since Ny; + N2 > Ny Also the previous proof

2i-1

(31) R;>1-— Ig__l (I —¢/m)>v>0,

for m sufficiently large. Now the probability that all N s, are zero for those

k’s is, since they are all the same, the j-th element of a divergent series. Conse-

quently, it is almost certain that for infinitely many k’s with ¢(k) = 0 (mod 3)

and ¢(k) = r, N1 241 + Neogn = 0, and hence dimension (F* * G*) < h(f).
This concludes the proof of the theorem.

6. Concluding remarks

It is clear that the principal theorem can be generalized to include n con-
volvants, some of which may be specified to have a discrete representation and
some a singular representation. It is hoped that some clever argument can be
found to simplify the detailed manipulation required by the author to obtain
the principal theorem.

REFERENCES

[1] P. BiLLiNGsLEY, “Hausdorff dimension in probability theory,” Illinois J. Math., Vol. 4
(1960), pp. 187-209; Vol. 5 (1961), pp. 291-298.

[2] 8. D. CuaTTERJ, “Certain induced measures and the fractional dimensions of their sup-
ports,”’ unpublished technical report, Michigan State University, 1963.

[3] H. Rusiy, “On the supports of infinitely divisible distributions,”” unpublished technical
report, Michigan State University, 1963.

[4] H. G. TUCKER, “On a necessary and sufficient condition that an infinitely divisible dis-
tribution be absolutely continuous,”” Trans. Amer. Math. Soc., Vol. 118 (1965), pp. 316-330.

[5] A. WINTNER, Asymptotic Distributions and Infinile Convolutions, Ann Arbor, Edwards
Brothers, 1938.



