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1. Introduction

The notion of a general branching process was introduced in ([I] chapter III).
The general branching process is a Markov branching process whose state space
Q consists of all nonnegative integral-valued measures concentrated on finite
subsets of a given space X. In [1], the discrete time-parameter case is studied
in detail.

In the present paper we shall be interested in the continuous time-parameter
case, and we shall restrict ourselves to the purely discontinuous Feller type.
This restriction, not allowing diffusion of individual particles, is natural for some
basic spaces X and generally for those processes where the types of particles
change by fission only. In [1] references are given to papers studying general
branching processes with a kind of diffusion of individual particles and with a
simple fission. The present paper does not include these examples as special cases;
on the other hand, it studies the purely discontinuous case in full generality.
The axiomatic treatment presents certain existence problems which are solved
in section 2. In section 3 we shall provide necessary and sufficient conditions for
the degeneration of the process. We may expect that the general case could be
studied in a similar way if Feller's pure-discontinuity condition were replaced
by a kind of mixed-type condition.

In the whole paper we shall use, with few exceptions, the same notation as
in [1]; in particular, X will denote the space of types of particles. We shall assume
that X is a a-compact metric space (that is, a denumerable union of compact
subsets), and we shall denote by $ t.he corresponding a-algebra of Borel sets in X.
By Q, we shall denote the set of all nonnegative measures w on DC, which are con-
centrated on finite subsets of X and assume integral values. Each element
w e Q may be characterized by a double vector (xi, ni; ... ; Xk, nk) where
{x1, * , Xk} is the finite subset of X on which w is concentrated (that is,

-{x1, Xk, xl}) = 0) and ni = (.'xi)"). According to the definition, ni is a
nonnegative integer. If we denote by x the measure concentrated at the point
x e X and which assumes there the value 1, we may express the relation between
w and the corresponding double vector (x1, n1; ... ; Xk, nk) by. w = t1 ny,.
We shall denote by ly the Kolmogorov a-algebra in Q, that is, the least a-

algebra containing all cylinder sets {w e Q: w( fx}) = n}, x c X, n an integer.
The set of all bounded $C-measurable functions on X will be denoted by i, and
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the set of all nonnegative oi inonpositive futcetionis from i \will be deniote( l)y
5+ or 3-. The syml-bols 0 or 1 will deniote the funietio f =0 or f 1; the syml)ol
0 wvill also deniote the measure cw e !, c(X) = 0. 1For f e J and w e 52Qwe slhall
write [.f, w] = Jx.f(x)w((dx). T'lhe total -ariationi of a finiite genieralized mi-easure
rin oni 9 wNill b)e deiioted by Iml, anid S,, will be the shift operator in 52, lnamely
S,Y = -V': w' - w F'. The set inidicat rix in ani arbitrary space will be delnoted
by d.

2. Branching processes with continuous time parameter

Any funietioni P(s, w, t, ') definied for all s < t, w E Q, anld I' e 'y will be called
a branching piocess with coiitinutous timic paramiietel if it satisfies the followinig
coiiditionis:

(2.1) l'(s, , t, I') is 's-iiieasurable;
(2.2) P)(s, w, t, ) is a iioinniegatixve measure oni 'y;

(2.:3) I'(s, zfl, t, Q2) = I1;
('' 4) l(t, co, t, 1') = (I (w, F5)

(2.3) ])(t/, c, t3y, I) = f J'(t2, W', t-3, F)P(tl, CO, t2, dw') for all tl < t2 < t3;

(2.6 ) l'(s, W + cv2, t, F) = f, f, d(wl + 2', F')P(s, WI, t, (dc)I'(s, 2 t,t,(2')

(t, s, F) - P(s, c, s, F) PJ(S, co, t, F) - P(s, w, s, r)(2.7) linii = lim
t8s- t -s t-+ - t - s

= p(s, w, F) exists anid is fiiiite for eaclh s, co, 1'.

Clearly, the followiing tlhrec conditions hold for p:

(2.8) p(t, , I') is '9-nmeasurable;
(2.9) p(t, w, *) is a finiite generalized mneasure ony

(2.10) p(s, w, {fw) < 0, p(s, 0, F) > 0

for I' C 2- {w}- anid p(s, w, 1) = 0.

Let us deiiote by 4) the Laplace funietionial of P(s, c, t, ), that is, F(s, (), t, f) =

| e[f"-']P'(s, w, t, dx') anid let Us write f(s, w, t, f) = log 4(s, w, t, f) anld o(s, w, f) =

efJf-']p(s, w, dw') anid ,6(s, c, f) = e`[fw]4(s, , f). ]3y (2.6), 4(s, WI + 2, tj.f) =
(S, o,tjf)4(s, 2,tjf) anid, by (2.7), (O/as)8 (S, c, t,f)]8=,- = (,(t, Wf). Hence,
(2.11) y(t, wI + W2, f) = p(t, wjf)e[f@2] + P(t, W2,jf)C[f'w
and dividing by exp [f, co + W21] We obtaini
(2.12) lk(t, WI + W2, f) = 4(t, WI, f) + 4(t, W2jf)-

In the theory of branching processes, the tratisitioii probabilities, starting
with one particle of a certaini type, are funidamiental. AW'e introduce a special
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notatioil for tlhemii wvriting l'(s, x, t, F) = P(s, x, t, F). We sl-hall apply the sainie
convention to all other functions p, 4, I, 4,6, and so onl. Particularly, the func-
tion p(t, x, I') = p(t, x, F) satisfies the followingc, thiee conditions:

(2.1:3) )(t, *, I') is X-measurable;
(2.14) 3)(t, x, ) is a fintite generalized mneasure onl
(2.15) j)(t, x, {Y] ) 00 and T)(t, x, F) > 0 for F C Q2 -

l(t, x, 5!) = 0.
'I'hc conidition (2.1:3) follows from the fact that the mappingixx is X-'Ij-
measurable. Usinig this notation we may rewrite (2.12) in an equivalent forml;
nami-ely 4(t, ,,f) = [;(t, ,,f), a] which implies

k

(2.16) p(t, ,r)=) n j)(t, Xi, Sy'_j)

for. =wn=i.
TI'le existence problem may be formiulated now as follows. Giveni a fulictioll
oni 7' X X X 'J satisfying (2.13)-(2.15), does tlhere exist a functionIP for

which (2.1)-(2.7) hold with p defined by (2.1(6)? We shall sol-e this problem
unider the assumption that T)(t, x, I') is continuious witlh respect to t. This assuillp-
tion is supposed to hold in the rest of section 2.
Suppose a functioni T) on T X X X 'ij satisfying (2.1:3)-(2.15) anid conitiiiuoliS

witlh respect to t is given, and let us definie a funietioil p oln T X Q2 X 'IJ by the}
relation (2.16). It is easily seeni that it satisfies (2.8)-(2.10) and it is coltinuouis
with respect to t. Hence, we may construct the funidamiienital Feller soluitioni (see
[2])
(2.17) I(s, w, t, r) = PI(k)(s, a, t, F),

k=O

vhere
r,,t,I') = (l(, F) exp [.I(s, t, ), a],

I)(t) (s, a, t, I')

(.))= exp [.1(s, t, ), ak]f -)(s', I', t, F)p,(S', a,, (dw') dz',

(29.18) .1 (s, t, x) = | (S', X) d1s'

q(s, a) = p(s, a, '(,),

q(s, x) = (j(s, X-),
p c(., F) = p(s, co, F - {, ).

It is well knowni fromii [2] that P9(s, c, t, 1') satisfies (2.1), (2.2), (2.4), (2.3),
(2.7). Usinlg (2.2) we could also prove that (2.6) holds. We shall omit the proof
wvhich would be similar to that of theorem 3.3 in [:3]. The onily problemn that re-
miains is to find under what conditionis the process 1' is "honest," that is (2.3)
lholdIs. 'I'o the author's best knowledge no siml)le necessary and sufficient, condi-
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tions are kniown even when the set X is finite and the process homogeneous. We
shall prove, however, that under a simple and not too restrictive condition on
first moments the process is honest.
We shall write m(co, t, Y) = fS w'(Y)p(w, t, dw') and m, (co, t, Y) =

fQ w'(Y)pl(cw, t, dw'). Clearly,

(2.19) In(w, t, l) = w(Y)q(t, W) +- 11(w, t, Y),
Imtl(w, t, Yf) < -w(Y)q(t, w) + mn1(w, t, )D.

We shall also use the notation m and ni according to the rule stated above. It is
easily seen from (2.16) that m(w, t, Y) = [m(*, t, Y), w].
THEOREM 1. For each t > 0, let

(2.20) sup I(s, x)l < , sup m1(S, , X) < -.
Oe<.t,x X 0O<8<t,xCXe

Then there exists exactly one proccss P) satisfying all the conditions (2.1)-(2.7). T'he
corresponding logarithmic .functional T' is the only nonpositive bounded solution o
the infinite system of differential equations

as(2.21) a '§(s, x, t,.f) = -{(s, x, 'T(s, *, t, f)), (xr e X, 0
< s K t)

with the initial condition T(t, x, t, f) = f(x).
PROOF. Let us denote by 1' the Feller fundamiienltal solittioII ad by , T the

corresponding Laplace and logarithmic functionals. We shall first show that the
corresponding functional T satisfies (2.21). According to (2.17),
(2.22) Cb(s, w, t, f) = exp [f + J(s, t, *), w]

+ f| f exp [J(s, s', .), cw]+(s', W', t, f)pj(s', co, dw') ds'.

Taking derivatives with respect to s we obtain

(2.2:3) a 4(s, w, t, f) = [q(s, .), w] exp [f+ (s, t, .), I]

IS2 4(s, ce', t, f)pi(s, w, d@')

-[S(s, .), ,W] fi exp [J(s, s', -), W](s', W', t, f)pl(s', c, dt') ds'

= -Isf 4(s, w', t, f)p(s, w, dWJ)
= -b(s, W, t, f) f. exp [iT'(s, *, t, f), '- ]p(s, cw, dwc').

Dividing by 1(s, w, t, f) we get
a

(2.24) s- T(s, o, t, f) = -(s, w, T(s, , t,f)
which proves (2.21).

For each t > 0 and f e 5- there exists a constant ko < 0 such that ko <
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E(s, x, t, f) < 0 for all x e X and 0 < s < t. This follows from (2.20) and the
inequality

(2.25) P(s, x, t, r) > d(x, r) exp | q(s', X) ds'

which implies

(2.26) (s, x, t, f) > exp {f(x) + ft q(S', x) ds'}

> exp {inff(x) + t iif §(s', x)} > 0.
Z 8,X

We shall now prove that T(s, x, t, f) is, for each f E i- and t > 0, the only
bounded nonpositive solution of (2.21) with respect to s, 0 < s < t with the
initial condition f(x) for s = t. Let us suppose that this is not true for some t and
f and let us write, for this t and f, yo(s, x) instead of 'T(s, x, t, f). According to the
assumption, there exists another solution y,(s, x) and a constant ki < 0 such that
ki < yi(s, x) < 0 for i = 0, 1, 0 < s < t and x e X, yo(t, x) = yi(t, x) for all x
and yo(s, x) $ y1(s, x) for some couple (s, x). Let so be the greatest lower bound
of all those s for which yo(s, x) = yi(s, x) for all x e X. Clearly, so is finite and
yo(so, x) = yi(so, x) for all x because of the continuity with respect to s. On the
other hand, to each e > 0 there exist x' e X and s', so - E < s' < so such that
yo(s', x') 0 yi(s', x'). Put k2 = max {ikol, Ikil},
(2.27) k3 = sup {fl(s, x, X) - q(s, x)},

O<8<t,XEX

and e = (1/3k3) e-k2andA = sup8,-.<e<.,,<x=ex Iyo(s, x) - yi(s, x)j. According to the
assumptions, 0 < 0 < xc and Iyo(si, xi) - y(si, xi)I > (0/.2) for some si, So -
E < si < so and xi c X. Integrating the eqtuation in s1 < s < so we get

(2.28) yo(si, xi) - y1(s1, xi) = |1 (,(s, xi, yo(s, *)) -;(s, xl, yi(s, .))) ds

= .f f (exp [yo(s, *), o- l]- exp [y1(s, *), w - xi, dw) ds.

Using the relation eu - ev = eW(u- v) (with w lying between u and v) and the
inequalities

[yi(s, .), w -X1] < -yi(s, x1) < k2,
(2.29) ~ | [Yo(S, )-Y1(s, *), co X1]jP1(s xl, dw)| <Ok. ,
we finally obtain

(2.30) 2 < lyo(s], xi) - y1(s, xj)j < (so - sl)Ok3ek,

which implies the contradiction 1 < 2k3ekte < 1.
Since y(s, x) -0, (s < t, x X X) is a solution of (2.21), and since there is no

other nonpositive bounded solution with y(t, x) = 0, we have '(s, x, t, 0) 0
which implies P(s, x, t, Q) = 1 for all x and s < t. Hence, the fundamental Feller
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solution is "'honest" anid it is well known from the geileral theory that it repre-
sents then the only solution of (2.1)-(2.7).
We shall now introduce the first momenits of the transition probabilities. Iet

us write M(s, c, t, 1) = r co'(Y)P(s, , t, dwo') anid Tif(s, x, t, 1Y) = A(s, x, t, Y).
Clearly,

(2.31) .1f(s, w, t1, Y) = ) F(s, w, t, aod(1( , ))]a=O

= *(s, WI t, a(/(.I ) ') ) ,,= = [.7Z (8s*2tX)' X@

THEOREMI 2. Let (2.20) hol(l for each t > 0 and(l let l-(8s, xr, Y) be conttintuols
with respect to s. Then all first moments are fnite and(l

(2.32) 17(s, x, t, Y)

= *I(X Y ) + E I)S,ik m , .r, (,) 7Of((S, x ,-, )d(s,, Si,,)

where (s, t)\. dlenotes the set s < s, < ... < Sk < t.
l'RIOOF. The forIIIula (2.32) is a formlial conise(quciice of (2.21) anid (2.31).

However, sinice we do niot kniow a priori wlhether the first moments are finite,
we must proceed more carefully. I et us wriite, for a fixed t > 0 anld Y e9C,
TVs, x, a-) = C(s, x, t, aT 1( , Y)) (o- < 0) anid ',(s, x, a-) = log 40,(s, x, a). Flur-
ther, choose arbitrar,y al al(ld cO2 such that ao- < 02 < 0. Fromn the proof of the-
orem 1 we kiiowr that, there is a constanit h-, > 0 such that 4o(s, x, a-) > K, for
all 0 < s < t, x c X anid a-< a- < 0. Sinice co(o)e-w(Y) is bounided in a- < a-2
and w cE Q, there exists KA2 < xc such that

a9 f W(V)eo P(1(S, X, I, 1( w)(2.33) *-_ 'I',(s, x, a-) = - < K.,
4o0(s, x, a-)

for all 0 < s < t x C X, a-1 a- < a-2. Clearly,

(2.34) VQs, *r,xI'(s, , a-)) = exp ['Jo(s, , a), - ]p)(s, x, d1)
anid

(2.35) --cxp ['L'u(s, *, a-), w -.]

= exp ['P(s, , a-),w - T]- ['I(s, , a),&, - T]d)a

< (to-'(s, .r, o-)K2W(X) < K`K};2(X),
anid wve see 1)b (2.20) tlhal (0 da-) exp [\I',(s, ., a-), c - -T] is integrable accoridinig
to the miieasure /)(s, x, *), uniformllly with respect to al < a- a-2. Ilellce,

(2.36) 'a4I(s, r a) = --a V(s, x, Io(s, , a))

= - / a- 'I(s, ?I, a-)h(s, x, a,.. Aao
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where h(s, x, a, *) is a finite measure on SC defined by

(2.37) h(s, x, a, Y) = fI(w(Y) - X(Y)) exp [I(S, , a), - ]1pi(s, x, dw).

The measure pi is nonniegative, finite, and continuous with respect to s for each
F C 'j and J2 w(Y)T51(s, x, dw) is conitinluous by the assumptions of the theoremii.
Tfhen, according to a well-kiiowii theorem, fI w(Y)pi(s, x, dw) is continuous with
respect to s for all F C W and, since exp [*o(s, *, a-),X- 0]< (s x, a-) <
K1- ' < x, the measure h(s, x, a-, Y) is continuous with respect to (s, a-). Then,
according to (2.33) and (2.36), (2/Ola as)'o is continuous with respect to (s, a).
On the other hand,

_2_* D211 02 /04 \2\.(2.38) d d Ods d 'toas o 9ao- Oa-

Clearly, the derivative (0/ds)P(s, x, t, r) exists and is finite and continuous with
respect to s for each F E '~, and the function co(Y')e-(Y) is bounded in Q X (all, a-2).
This is sufficient for the following two formulas to hold:

(2.39) 0d da (s, xa-) = f w(Y)efw(Y) P(s, x, t, dW),Os 0o- as

(2.40) a 4(s, x, a-) = e(Y) a P(s, x, t, dw),
as a1es

anid w-c see that botlh functions are continuous with respect to (s, a-). Hence,
(0/20s 0a-)4'o is also contintuous with respect to (s, a) which implies (a 2/Oa as)Io =
(a2/s 0a-)Io. This proves, according to (2.36) that (O/da-)4o satisfies for eacl
a- < 0 the system of differential equationis

(2.41) ds ( -a 'ts(, x, as)) = -f d ()(, y, a)hI (s, x, an, dy)

in 0 < s < t. For each a- < 0, supo<s<,xz-x (/1a,)'o,(s, x, a-) < x because of
(2.33). Fturther, for each a-, < 0

(2.42) stup lhl(s, x, a, Y) < K,
0 <8 <t,l <.e <0,X EX

whlere K3 = Kl supo<8.<,xE-x (mn,(s, x, X) + q(s, x)) < x.
Using (2.42) we could prove in the same way as in theorem 1 that (a/0a-)*o is

the only bounded and nonnegative solution of (2.41) with the initial condition
(a/la-)*o(t, x, a) = d(x, Y). Let us consider the series

(2.43)

(d(X, X) + f 1J (s1, x, a-, dx) . . h(sk, Xk-1, a-, Y)d(s,, * * *, Sk).
k= I (a,t)k jXl-

According to (2.42), the k-th term of this series is less than (K3ktk/k!) uni-
formly with respect to 0 < s < t, al- a- < 0, x E X. Hence, the series is con-
vergent and, for the same reason, it is term-by-term differentiable. It is also
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easily seen that is satisfies (2.41) and, consequently, (a/0a)To(s, x, a) is equal
to (2.43). Since the series is convergent uniformly with respect to -1 < a < 0,
we may apply the term-by-terrn limit procedure o- - 0 and (2.32) results.

3. The homogeneous case

We shall suppose in this section, that the process is homogeneous and we shall
write P(w, t, r) instead of P(O, w, t, r) = P(s, c, s + t, r), and similarly for all
related functions. The infinitesimal functions p, m, and so on, do not depend on s
in this case. The main assumptions of theorems 1 and 2 are
(3.1) sup m1(x, X) < 00, sup W(x)l <co.

xEX xEX

The system (2.21) of differential equations assumes the form

(3.2) dt T(x, t, f) =(, *

and

(3.3) Ai7(x, t, Y) = d(x, }Y) + kE k

where M(k)(x, 1Y) = f T-(kl)(y, Y)m.(x, dy,). Similar expressions can be obtained
for second moments.

Let us write

V(c, t, Y, Z) = IQ (w'(Y) - 31(w, t, Y))(w'(Z) - A1l(w, t, Z))IP(w, t, dw'),

(3.4) v(co, Y, Z) =f (& (Y) - W(1))(W'(Z) - c(Z))P(W, dw'),

V1(c, Y, Z) = fQ w'(Y)W'(Z)pi(w, dw').
Clearly,

V(W, t, Y, Z) = 0 ;(2 , t2 ald(2, Y) + 224(., Z))]l=.f2=o,

,92(3.5) v(wo, Y, Z) = 08 4o(w aiud(., Y) + a2d(-, Z))]1-=o-0,
Aaol AaO2

v(cw, Y, Z) = vi(w, Y, Z) - W(Y)n1(c, (Z )m(, Y) -w(Y n z)q(w).
We shall write again V(x, t, Y, Z) instead of V(., t, Y, Z) and similarly for v and
Vl.
THEOIREM 3. Let

(3.6) sup v-l(X, X, X) < x, sulp Iq(x)I < x.

Then all V(w, t, Y, Z) are finite
(3.7) V(w, t, Y, Z) = [V(x, t, Y, Z), w]
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and

(3.8) V(x, t, Y, Z) = fl fI W(y, s, Y, Z)MI(x, t - s, dy) ds

where

(3.9) W(y,8, Y, Z) = fxxx (y, t, Y)M(z, t, Z)v(x, d(y, z)).
PROOF. Since we do not know a priori whether the second moments are finite,

the complete proof should follow the method used in theorem 2. We shall omit
these details, which would show, in an analogous way, that all V are finite and
uniformly bounded in x and that formal differentiation of (3.2) is correct. Hence

d 02l d
(3.10) dt T2(x, t, orid(., Y) + o2d(*, Z)) d V(x, t, Y, Z)dt coai aO'2 d

= fI {V( t, Y, Z), w-x] + [M(-, t, Y), co- x][M(., t, Z), o-x]}p(x, dw)

which yields the following system of differential equations:

(3.11) d V(x, t, Y, Z) V(y, t, Y, Z)m(x, dy) + W(x, t, Y, Z).

As in theorem 2 we could prove that there exists exactly one bounded solution,
and it is easily seen that (3.8) satisfies (3.11).
We shall now prove three theorems on the degeneration of the process. We

shall have to impose further restrictions on the process. The main assumption
will be that the first moments are compact and strictly positive operators on an
appropriate subspace 9 of W. From several natural possibilities we shall choose
9 equal to the class of all continuous bounded functions on X. Let m be the
linear operator on 5F defined by mf = fIx f(y)mff*(, dy) and let m1 be the linear
operator defined by rnl(x, Y) in a similar way. Put m2 = m + kI where k =
supxex lq(x)l and I is the identity operator.
We shall suppose in the rest of this section that m2 is an operator on 9, that is

m2f E 9 if f E 9, and that it is compact and strictly positive with respect to the
cone 9+ = 5i+ n 9. Let p be the spectral radius of M2. It is well known from the
theory of strictly positive compact operators (see [4], for example) that there ex-
ists exactly one function 1 E 9+ and exactly one finite and nonnegative measure X
on 9t such that m21 = pl, 0 < a < 1(x) < ,B <0 for all x E X, fX rn2(X, Y)X(dx) =
pA(Y), A(X) = 1, [1, X] = 1. Clearly, the operator m has the same pair 1, X of
eigenvectors corresponding to the largest eigenvalue r = p - k. The operator
Mt, induced by M(x, t, Y) is equal to exp mt = e-kt exp m2t. It is also compact
and strictly positive on 9 with the same pair 1, X of eigenvectors and with the
largest eigenvalue equal to ert.
The following formula (3.12) will be useful. Set for a fixed x and t, F(r) =

'I'(x, t, rf) for 0 < r < 1. Using the Taylor expansion F(1) = F(O) + F'(O) +
2F"(r) for some 0 < r < 1, we easily see that
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(:3.12) '(.x, t, ) = f [f, +]P(x, t, dw) ± D-2(X, tt,rf)

X -{¢ f [f, @]2cT[fw131(x, t, dc) - (I [f, w]e4-f"2l(x, t, dw)

f.| f(y) lj(X, t, dIy) + Y1(X, t, Tf)1 ([f, .] - P'(x, t, if))2er[f-]1P(x, t, dw.)

Wvliere +'(x, t, rf) = ciV'(X, t, rf) f [f, ,]er[f":T(x, t, dci). Since the last term in

(3.12) is nonnegative,

(:3.13s) 0 > +'(X, t,f) > f,f(y).Ml(x, t, dy).

We sliall call the process degenerate, if T'(x, t, 0,}) -l I for all x e X.
THIEOIREM 4. If r < 0, then thte process is (legenerate.
'ItOOF. ]3y (3.13)

(3.14) I'(X, t, -l1)| < f l(y)j-j(x, t, (1y) = ertl(X) O 0.

()n the other hald,

(J.13) P(X, 1, t,iw: c(X) > B) . 1 -

THEOREM 5. Let r = 0 and let 4'(x, f) e S .for each f J-. T1hen the process is
not degenerate if andl only if
(3.16i) I3(x, {c.: w,(X) = 1}) = 0 for all x e X.

PInOOF. Suppose first that (3.16) does not hold. By (3.13)

(3.17) T4(., t, -1) > -f| l(y)T.l(x, t, dy) = -1(x) for all x, t,

and fromii the fundamienital relationi

(:3.18) T(x, s + t,f) = +'(x, s,'(, t, f)),
we see that +(x, s + t, -1) > '(x, s, -l). -leiice, limnt '(x, t, -1) = fo(x)
exists for all x, and by (3.18) we have

(3.19) +(x, s,fu) = fo(X) for all x and s.

B3y the assumption of the theorem, ;(x, f) is coiitillUous for each f e 5-. It is
easily seen from the construction of the process that +(., s,jf) c 9 for each s and
f e 3-. Hence, fo(*) = T(*, S, fo) C 9 and, at the same time fo(x) = T(x, s, fo) >
fxvfo (y)AI(x, s, dy). If .fo # 0, theni (by [4], theoremi 8) fo = ,'l for some -Y < 0
anid tP(x, s, .f) = f.xfo(y)37(x, s, dy) which imaplies that the last termal in (3.12) is
e(lual to zero for all x aiid somie 0 < r < 1. Tihenl

(3.20) P (x, s, {c(w: fo, w] = V (x, s, T, fo)}) = 1

for all x and s. Integrating with respect to the measure P(x, s, *), we obtain
.fo(x) = fxfo(y)f'lj(x, s, d1y) = Ti(x, s, rfo), or, T(x, s, {w: [1, w] = 1(x)}) 1.
Since l(x) > a > 0 for all x e X, this is possil)le only if T(x, s, -w: w(X) = I])
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1 for all x and s, or, if p5(x, {co: w(X) = 1}) = 0 for all x. But we have supposed
the contrary and, consequently, fo(x) 0 which proves that T (x, t, -1) -* 0 for

all x. The fact that the process is degenerate follows now in the same way as
in the preceding theorem. On the other hand, if (3.16) holds for all x, theni
(3.21) PI(x, t, co: (,X) = 1 I)- 1 for all x, t

anid the process is nlot degenerate.
THEOREM 6). Let r > 0 anid K = stp1xCx v(x, X, X) < x. Thenl the proc-

ess is not degenerate.
PROOF. Iet t(t) be the sample funietions of the process. For each t, t(t) c Q,

and we may therefore define a new random variable

(3.22) 0(t) = ert | ), dy).

We shall first estimiiate E§z(o(t)) and Es'x(02(t)), wlhere Ex miieanis the expectation
with respect to the iniitial distribution conicenltrated at {.'

(3.23) Ex (6(t)) = e-re f [1, co]F'(x, t, dc1)

= e-rt f 1(y),37(x, t, dy) = l(x) > a > 0.

By (3.8),
(3.24)

Ex(92(t)) = e-2'f2 [1, W,]2P(X, t, dW)

= e-2r1 I(Y)l(z)V(x, t, d/(y, z)) + (f 1(y)TJ(x, t, dy)

= e 2rt {f|~ f| e2rsl(,J)l(Z)V(i, d(, z))3[(x, t - s, dIuI) (Is + e2rt12(x)}

< f2-Ka-e-rt ell (1s + 1} < 2(K(ar)-1 + 1) < o.
-lt a foJ

If the process were degenierate, then

(:3.25) E§'F(0(t)) < (E+'(02(t))T'(x, t, {w: w(X) > 1 I))I 2 -O0

in contradiction to (3.23).
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