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1. Introduction

1.1. Let us assume that there is defined on some probability field {Q, (B, P} a
random process t(t, cw.), t E E, where E is some set on the line, and w E U. We
denote by FE the set of all functions, defined on the set E anid assuming numer-
ical values. The mapping t(., w) carries over the a-algebra ( oIn Q to some
a-algebra 5 of subsets of FE and the measure I' oI (1 to a measure ui on i. The
a-algebra 3F containis at least the sets of the form {x(.); x(t1) < xl} for ti E E
and xi real (because {w; t(t1, w) < xl} e 63) and, consequently, contains all
cylinder subsets of the space FE. If we denote by 5o the smallest a-algebra of
subsets of FE containing all cylinder subsets of FE, theni 50 C 5F. As a rule the
measure A on cv is completely determined by its values on 5: ((,u, i) is the com-
pletion of (,u, 3F0)). Therefore, it suffices to consider the measure u on the a-algebra
5o, which depends only on the set E and not on the specific form of the process-
We shall call the measure u0oil ao the measure corresponding to the process
t(t, w). In many problems one can identify the process and the measure, because
from the measure A one can define the probability space [FE, 3, ,u}, on which
the natural mapping t(t, x(-)) = x(t) defines a random process to which cor-
responds the measure ,u.

If two probability measures Al and A.2 are defined on the a--algebra 5:o, then,
as is well-known, A2 is said to be absolutely continuous with respect to p1, if
(A) = 0 for all A E ao for which ,u1(A) = 0. The absolute continuity of M12

with respect to IA, is a necessary and sufficient conditioni for the existence of
an 5o-measurable funcetioni p(x) such that

(1.1) j2(A) =A p(x),1(dx)
for all A e 5o. This function p(x) is called the density or the derivative of the
measure A2 with respect to /Al and is denoted by (d,A2/djl)(x). If, for some A,
(A) = 1, A2(A) = 0, then I, and A2 are mutually singular.
1.2. In recent times a substantial part of the work in the theory of random

processes has been devoted to the solution of the question of the absolute
conltiniuity (or the singularity) of measures corresponding to random processes-
One can indicate various directions, frequently having important practical
initerest, in which results on the absolute continiuity (or singularity) and density
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of measures inl functional spaces are used. The first results oil the form1 of the
density of measures in functional spaces were obtained by Cameron and Martin
[1]-[3] in conniectioni with the study of change of variable in the Wiener integral.
The Wiener integral can be regarded as an initegral with respect to the measure
I.LW corresponding to the Wiener process WV(t), defined on the interval [0, 1]
(that is, a Gaussian process with inidepenident increments; for which E1V(t) = 0,
DWV(t) = t). Then if f(x) is a funictional which coincides almost everywhlere
with an go-measurable functionial, f f(x),iw(dx) is called its Wiener integral. In
the aforementioned papers a tranisformationi formula was found for the integral

(1.2) | f('l'-1x),4jj (dx) = f f(x)D(xr)Awn(dx),
where T is an go-measurable transformation of F[oj] into F[o,li, satisfying cer-
tain definite conditions (which it is not necessary to give here), and O(x) is a
functional, constructed from the transformatioi 7', which generalizes the concept
of the Jacobian of a t-ranisformationi in the finite dimensional case. Formula (1.2)
can be rewritten in the followinig way: let l (7'TA) = v(A). Theii P is also a
probability measure, anid

(1.3) ] f(7T-1x)l1(dx) = ff(x)v(dx).

Conisequently, ff(x)v(dx) = ff(x)D(x)Ai,,(dx) for all measurable funletionials
f(x), which is possible only under the conditioni that D(x) = (dv//dIuw)(x).

Thus, the density of onie measure witlh respect to another caii be used as the
Jacobian of a transformation in a "change of variable" in integrals with respect
to measures in furictional spaces.

In the case where the process correspondinig to ,u has beecn well-studied, one
can use the sole fact that the measure 12 is absoltely continiuous with respect
to '1 in order to study which properties of the process correspondinig to 112 have
probability unity. The study of these properties represents one of the importanit
problems of the theory of random processes, and the use of the absolute con-
tinuity of measures fre(quently facilitates its solution. Further, thc value of the
deiisity (d112/d11j)(x) makes it possible to reduce the calculatioll of the math-
ematical expectationis of functionals of one process to the calculation of the
mathematical expectationis of functionals of the other process. For this, olie
can use the formula

(1.4) Ef(.42( )) = Ef(6H( ) 1111 q(.l()),(1,11
where ti(-) is the process to wlhich the measure pi corresponids. The validity
of formula (1.4) followvs from the relationiEif(ti )) = J..f(X)uij(1dx). Thus, if we
kinow how to calculate the mean values of characteristics of the process 4&(.),
we are able with the help of formula (1.4) to finid also the mean values of char-
acteristics of the process t2( * ) -

By means of the density witlh respect to a measure wlhich is considered as
kIIowVn, onie can define othler probability measuires ill a funietional space. Thus,
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we arrive at onie of the constructive methods of defiiiitioin of a rancdomi process:
defining the process (more precisely, the measure correspondinig to the process)
by means of a density.
The densities of measures in functionial spaces call be used in a natural way

in solviing statistical problems involvinig ranidom processes. Suppose, for example,
that the problem consists of choosing between two hypotheses conicernintg the
measure corresponding to a raindom process. Let us assume that the hypothesis
Hi, (i = 0, 1) consists of the assertion that this measure coiincides with ,:. Thell,
in the case where the measure 41 is absolutely contiinuous witlh respect
to 4to, rejecting the hypothesis Ho for (duj/d4o)(x) > C and adoptilng it for
(duj1/dMo)(x) < C, we obtain a class of optimal criteria (to every C > 0 there
corresponds one criterion). To calculate the probability of errors of the first
anid second kind, we have to know the distribution of (dMi/dAo)(x) under the
zero and the one hypothesis. In the case where one has a family of measures
j4a in the functional space and (dpM1/dyPao) exists for some ao, then the latter
expression can be used to finid an estimate of the paramieter a by the maximum
likelihood method.

Finially, one needs expressions for the densities of nmeasures for calculating
the amount of information which is contained in one process t(t), concerninlg
another process q(t). If Aj(dx) and ,u(dx) are the measures correspondinig to the
processes t(.) and -q(.) respectively, let ,u(dx) X y,,(dy) be the product of these
measures in the space FE X FE. Let m,,(dx, dy) be the measure in the same
space, corresponding to the two-dimensiornal process 77(.),7(.)). The quantity
e,,, which is the amount of information in the process t(t) concernirng O(t) (or

vice versa) is definied by the formula

(1.5) §ta = f log d,-d,,, (x, y)l, ,(dx, dy),

if dtu,,,,/d(.s, X n,,) exists. (In this connectioni, see the moniograph of Pinsker
([18], pp. 9-10).)

1.3. Usually, theorems on the absolute continluity of mieasures and formulas
for densities have been proved for certain specific classes of processes. The first
papers of Cameron and Martin [l]-[3], as was already mentioned, considered
the question of the absolute continuity of the measure, corresponding to the
process obtained from the Wiener process by means of a liniear or nonliniear
transformationi, with respect to the Wienier measure. Prolhorov [4] proved the
absolute conitilnuity of the measure, correspondinig to a diffusioni process with
diffuision coefficient 1 and shift coefficient a(t, x), satisfying certain smoothness
coinditionis, with respect to the Wicner measure, and founid the corresponding
density. We remark that his result involved the necessity of studying certain
sets of probability zero for the diffusion process. More general results for Markov
processes were obtained in the works of Skorohod [5], [6] and Girsanov [7];
the former considered processes having a diffusion and a discontiniuous part,
and the latter considered a class of processes cmbracinig Malrkovian diffusion
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processes. The absolute cointintuity of the measures corresponidinig to processes
with indepenideiit increments were conisidered by Skorohod [8], [9]. In this case
we succeeded in findinig niecessary anid sufficienit conditionis for absolute coII-
tinuity and in determininJg the denisity of one measure with respect to aniother.

Particularly, many papers have beeti devoted to the absolute conltinuity of
Gaussian measures. In the case where the Gaussiani processes are distinguished
only by their mean values, this problem was conisidered in a paper of Grenalider
[10]. Gaussiani processes of general form were conisidered in papers of Hajek [11],
Feldman [12], [13], Rozanov [14]-[16], anid Ilao anid Varadarajan [17]. A
number of papers have considered sufficienit coniditionis for the absolute colntillu-
ity and singularity of measures correspondinig to stationiary Gaussiani processes
(see, in this conniectiont, Pinisker [18], Rozanov [13], [16], alnd Alekseev [20];
a more complete bibliography of work in this domain is to be founid in the
review papers of Yaglom [19] anid Rozanov [16]).

1.4. In this paper we consider some niew results oni the absolute conitinluity of
measures and the form of the density of one measure with respect to alnother.
In section 2 we consider some general theorems oni the absolute contilnuity of
measures, correspondinig to processes which differ only in their mean value.
Some results oln the structure of the set of admissible mean values (that is,
mean values for which the absolute contiinuity with respect to the measures
corresponding to processes with zero mean is preserved) appear in a paper of
Pitcher [21]. Section 3 is devoted to absolute continiuity for Markov processes.
Here we consider cointiniuous processes which are more general than diffusion
processes. In section 4 we consider stationary Gaussian processes. The basic aim
here is to obtain sufficienit coniditionis for absolute coinitnuity and sufficient
conditions for sinigularity ini terms of the spectral denisities of the process.

2. On admissible translations for infinitely divisible distributions
in a Hilbert space

2.1. In this subsection we consider probability measures in a separable Hilbert
space H. We shall assume that every measure is defined on the o-algebra 63H
consisting of all Borel subsets of H (by virtue of the separability of the space,
it is sufficient for this that every halfspace {x; (x, a) < a'., where a is ani ar-
bitrary element of H, anid a is a real niumber, belonig to 61H). We mentioni that
with every measurable separable process x(t), definied oni a finite interval [a, b],
one can associate a measure in a Hilbert space, as lonig as onie of the colnditiolns

(1) 1'){ sup Ix(t) < x = I,
a<t<b

(2) fab Ex(t)l2 dt <

is fulfilled.
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The convolution Al *,2 of two measures which are defined on (3H can be
defined in the usual way. This convolution will be the distribution of a random
variable (, with values in H, which is equal to the sum j + 62 of two independ-
ent variables, where (k is a variable with values in H, having the distribution ik.
A measure .t on OV3H will be called infinitely diVisible, if for every n one cani

find a measure A(,) such that , is the n-fold convolution of the measure '400
with itself.

It is conveniienit to define measures on (3i, by means of their characteristic
functionals:

(2.1) (z)= f exp {i(z, x)},i(dx), (z c H).
Under certain conditionis the characteristic functionial of an infinitely divisible
measure ,u has the form

(2.2) p,,(z) = cxp {(z, b) --(A z, z) + f C[ezx, - 1I i(z, x) rdxfi L1 + (rx,)
where b E H, A is a nonniiegative definiite symmetric operator on H with finite
trace, and the measure 7r(dx) is such that the measure

(x, x)(2.3) v(C J 1 + (x r(dx)
is finite.

Let us denote by Ta the operator of translation ill H by a: Tax = x + a, anid
by AIa the measure defined by the formula tt,(A) = ii(T_aA) (if A is the distribu-
tion of the variable (, then Aa iS the distributioni of the variable t + a). We
shall be interested in admissible translations for ,, which name, followinig
Pitcher [21], we give to those a for which 4a is absolutely conitiniuous with
respect to ,. With regard to the measure A, we shall assume that it is infillitely
divisible and has a characteristic functional of the form

(2.4) s,,(z) = exp { [ei(zx)-1- i(Z, x) ] 7r(dx)}
The fact is that a measure having a characteristic functionial of the form (2.2)
can be represented as the convolutioni of a measure with a characteristic func-
tional of the form (2.4) and a Gaussian measure (whose characteristic functional
is exp {i(z, b) - '(Az, z)} ), and the set of admissible translations for Gaussian
measures has been thoroughly studied (see [10]).

2.2. We shall niow prove a general theorem which gives sufficient conditionis
for a translation by a to be admissible for a measure u having a characteristic
functionial of the form (2.4).
THEOREM 1. Suppose, for a e H, that one can find a sequence of nonnegative

functions gn(x) which are 631H-measurable and which satisfy the conditions

(1) lim f gn(x)x7r(dx) = a,
n--
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(2) lir J gn(x)I x I r(dx) = 0,

(3) there exists a monotone, differential function p(t), convex downwards, defined
for t > 0 and satisfying the conditions .o(t) > 0, V(1) = 1, so(ts) < 'p(t)w(s),
rimn-. V(t)/t = 0 and, moreover, for t < 0, r(1 + t) 1 -1- '()t = 0(t2)
and

(2.5) lim sup f [k(1 + 9n(X)) - 1 - 0'(1)gn(X)]7r(dx) < °°-

Then pa is absolutely continuous with respect to ,u.
PROOF. If the conditionis of the theorem are satisfied, then one caln choose

a sequence en -O 0 such that

(2.6) frI >e. gn(x)xT(dx) a.

Let mn be a sequence of integers such that

(2.7) lr 1m (f (1 + gn(x))ir(dx)) =

Let us introduce independeint random variables with values in H: (n), * (n)M.
having the same distribution,

(2.8) P{tn) e C} = m f xc(x)w(dx) if O ¢ C,

(2.9) P{il) = = 1 - 1 f r(dx).

Similarly, 71() ... , 7i.,. are independent and identically distributed, with

(2.10) { C} = j (1 + g,,(x))xc(x)7r(dx) if 0 j (7,

(2.11) p O01})= 01 = 1 - f (1 + g.(x))7r(dx).
We denote the distribution of 1 ) by v(,). of 7w(n) by V(0t), of the variable

(2.12) =(n) + ... + 4(n)>) 1 + (x x)7r(dx)
by ,.(n), and of the variable

(2.13) n = 7(n) + + 77 - I 1 + 7Xr(dx)
by A(n). It is easy to see that the measure A(.) (,(n)) converges weakly on cylinder
sets to the measure (qja), since the characteristic functionals of these measures
have the form
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(2.14) <,,."(Z) = (1 + - | (ei(-.) - 1)ir(dx))

X exp { >f 1 + (X, x) r(dx)-

e= (eip'z - 1 _ i(z, x) 7r(dx) + (1)
1>d. 1+ (x, x )- d) V+ (1

(by virtue of condition (2.7)); in exactly the same way,

(2.15) W4z(z) = exp {f (ei(Z,z) _ 1 - 1 +S(x)x)) (1 + g9(x))7r(dx)

and + + (()w(dx)} + o(l),
and

e(2.1) | g(xi(zX) )7(dx)O(2.16) j gir(dx)-( 0

and

(2.17) f g-(x) (Zxx) (dx)+ (a, z)1 + (x, x) i(x
in view of conditions (1) and (2) of the theorem. By virtue of lemma 3, section 2,
chapter 4 of [6],

(2.18) (n) ) (E II (d(n)
It is easy to compute that

(2.19) = 1 - gn(x)7r(dx)(1 -Yn,k)

+ yn,kgn(Qk(n) + 0 (-),

where Yn,k = 1 if k(#n) 0, yn,k = 0 if tP) = 0. Further,

dVn)~ ~~~(n
(2.20) Ep(d (~n) ) < ( E[k d(8)k ]

dA~~<E kII dvi(n)(())<I s d n in

= II (1 +Ed(n i(l(tn)) _ 1))

< exp {mnE (n) ($ ) - p)}

<{ (+-)+E f >fn



170 FIFTH BERKELEY SYMPOSIUM: SKOROHOD

where '(t) =-(1 + t) -<(1) - p'(1)t. Therefore,

(2.21) lim sup Efp (d4M (¢n)) <
Further, the inlequality

(2.22) pa(C) = lim pun)(C) = lim Exc(¢n)

< R lim sup AW)(C) +±im sup Jn ()(x)du((x(dx)
nvd n fo r;(alt)ed(I)) (x) >K}I dl n

< R,u(C) + (R lim sup Esp dAX1* (¢n)
is valid for all C in the algebra genierated by the cylinider sets, wvlich genieratesthe o--algebra of measurable sets. If ,A(C) = 0, then j,u(C) = O(Rl/p(R)) for
aniy R whatsoever; conisequenitly, Aa(C) = 0, sinice RI?p(R) -O 0 as R - x.
COROLLARY 1. Let us denote by N, the set of all elements z, for which there

exists a set E, lying in the ball Se of radius e with center at zero, such that
z = fE x7i(dx). T'hen the set N0o = n, >o N, (where N, is the closure of the set N,)
consists of admissi1ble translations for the measure IA.
To prove this assertioni, we choose a sequenice f, whlich tends to zero moni-

otoinically, anld sets En C S.. such that lim.- fJE xr(dx) = a; moreover, let
cn tend to zero monotonically, but _,°n= c = +0o. Then one cani take gn(x) =
Z-M=n CmXE,(x), where the kn are such that = c,,, - 1. It is easy to construct
a functioni (p(t) for which conditioni (3) of the theorem will be fulfilled.
REMAIRK 1. One cani similarly show that if -a E No, theni a is likewise an

admissible tranislation.
2.3. In this subsectioni we apply the results obtaiiied to a specific class of

inifiniitely divisible distributionis in H-the stable distributionis. By this term
we shall meani, in analogy with the finiite dimenisionial case, those inifinitely
divisible distributioiis for which

(2.23) ( ) m(Ar) dr
where m is some finite measure concentrated oni the surface of the ball S1, and
A r is the set oni the surface of S, definied by
(2.24) Ar = gy: ry e A1 nq y: -= .

THEOItEM 2. Suippose that the exponetnt a in Jormula (2.23) is not less than I
and that Jor given a one can find a sequence of measurable nonnegative functions
hn(x) such that

(2.25) a = lim f hn(x)xm(dx);
nxf

thlet a is an admissibl1e translation for the nmeasutre ,u.
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PROOF. Without loss of generality we can assume that the hn(x) are bounded.
Choosing some e, we introduce a number 5A(x) such that

(2.26) h,l (x) =, d r.

It is obvious that oiie caii choose the sequence e, so that efl, < An(x). Let
EX = {x: An,(x) < lxl < o_- Theti fE. x7r(dx) = f h,n(x)xm(dx). It remains to
use corollary 1.
REMARK 2. It is easily seen, that the tranislations of the form (2.25) con-

stitute a conie in the space H, which we deilote by K+. Let K- be the cone of
vectors having the form (2.25) with negative hn(x). Then, by virtue of remark 1,
the set K- also consists of admissible translations. Consequently, the set Ho =
K- + K+, consisting of elements which are representable in the form of a sum
x- + x+, where x- e K-, x+ e K+, likewise consists of admissible translations.

Let H- be the orthogonal complement of Ho. Then for z e H- we have
f (z, x)h(x)m(dx) = 0 for every bounded measurable functionl h(x), since
f h(x)xm(dx) E Ho. Choosing h(x) = (z, x), we obtain f (z, x)2m(dx) = 0;
hence, for all c > 0, fzx <C (z, x) 7r(dx) = 0. It follows from this that (o(Xz) = 1
for all real X, that is, (z, x) = 0 almost everywhere with respect to the measure u.
On the other hand, sp,,(Xz) = ei"(z,z), namely (z, x) = (z, z) almost everywhere
with respect to the measure uz. Consequently, for all z e H-, z $ 0, the measures
A and jHz are mutually singular.

3. The absolute continuity of measures corresponding to Markov processes

Onie can say that for Markov processes of diffusion type, and also Markov
processes having continuous, diffusion and jump components, the question of
the absolute continuity of measures is basically solved (see [5]-[7]). In the
book by Dynkin ([22], pp. 423-425) certain conditions are given which must
be satisfied by a random variable {, in order that it be the density of a measure
corresponding to a homogeneous Markov process of general type. In this sec-
tion also, only homogeneous processes will be considered. For these processes
we shall construct a class of variables which are densities, and we shall consider
the relation between characteristics of processes, when the density of the meas-
ure of one of the processes with respect to the other is known.
We shall consider a continuous Markov process X: {x,, ¢, St, P,} in some

bounded domain G, vanishing on the boundary (that is, r, the stopping moment,
coincides with the instant at which the boundary of G is reached). We consider
the class of additive functionals (pt, satisfying these conditions:

(1) E.,ct = 0 for all t > 0, x e G,
(2) Exfp2 is measurable in x and supx E.,2 < oo,
(3) so, is conitinuous in t with Px-probability 1 for every x e G.
We shall call the additive functionals satisfying these conditions M-func-
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tionals. If A is the infinitesimal operator of the process and f E 5)A, then an
example of an M-functional is the functional

(3.1) St = f(xt - f(xo) - f0 Af(x8) ds.

With every pair St, 4t, of M-functionals one can associate an additive functional
(p, 4')t for which Ex,tf = E.(, 4)t, and the functional (p, 4)t will be absolutely
continuous with respect to the nonnegative functionals (so, p), and (i', #)t. If
(so, '), = fo F(u) d('p, so), then F(u) = g(xu) and we shall from now on denote
the function g(x) by (Oa~/co)(x). All these facts are proved in my paper "On
the local structure of a continuous Markov process," which will be published
shortly.
THEOREM 1. Let rt be an M-functional. Then the quantity exp {,P-C , s)r}

is such that X = {xt, t, 5t, Pz}, where P,(A) = EZxA(w) exp {f - < o)r} will
also be a homogeneous Markov process.

This theorem follows from section 10.9 of Dynkin's book ([22], pp. 424-425),
if one takes into account that

(3.2) E. exp {sr- I(s, O)C} = 1.

Formula (3.2) can be established by using the relation
n2

(3.3) exp { -r )} = lim (n, tn = II (1 + 'Pk+l/n - Pkln)
nf-4 k=O

(the limit is in the sense of convergence in Px-probability). Further
nt

(3.4) Ex II (1 + S°k+l/n - ick/n) = 1
k=O

and the possibility of passing to the limit under the integral signi is guaranteed
by the fact that

n2 nt
(3.5) Ez II (1 + S°k+l/n - SPk/n) log II (1 + Sk+ll/n - Sc/cn)

kc=O k=0

/ j-1 ~~ ~ ~~~~n2\
= 0 E(.if (1 + S/k+l/n - Sck/n) E (Scr+1/n - ScT/n)2)

= 0 (Ex ]I (1 + S°k+l/n - S//kn)t(Xj/1n) < sup 1,(X)I,

where +(x) = Ex(pff.
Since the {n are such that ESn = 1 and ESn log (n < supx Ib(x)i, then

Ex limn- xn = limnt.Exzn = 1. Thus, formula (3.2), and with it theorem 1,
are proved.
We shall now study the relation between characteristics of the process X =

{Xt, ¢, 5t, Pz} and the process X = {xt, ¢, it, PZ}. To this end we shall consider
the resolvent Xx, of the process X:

(3.6) fl,f(x) = Ex f0 e-f(x,) dt,
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where Ex is the expectation with respect to the measure PT. We observe that
(3.7) E[exp {or- 2(, so)r) 1It] = exp {so, - '(so, s)t}.
Therefore

(3.8) ljxf(x) = Ex fo eXtf(x1) exp {so-- (s s)4 dt

= E. exp {-Xt + sot - (so, s)t}f(x1) dt.
We further use the easily deduced relation

(3.9) e- = 1 + fo ea- dsu,
where at = sot -2o y)1. Denotinig )yyRx the resolvent of the process X, we
obtain

(3.10) Rxf(x) = RI,\.(x) + Ex fo e'X'jf(x,) fo e- dso,

= Rxf(x) + E f e -u+a. [f f(.x)e-Xt dt] dsou

= Rxf(x) + Ex f0 e Xu+a_Rxfj(xu+o) dsoi_.

We inote that for an M-functionial, Ex f g(u) dso. = 0 for every 5t-measurable
funlctioIn g(t). The meaninlg of

(3.11) f| ecXu±au-xf(.r ,+o) d<,

is that in the Stieltjes sums, RIf(xu) is takeii at the point Uk+l, if the increment
soUk+1 - soui is considered. Therefore, the last integral reduces to the integral

(3.12) fo,e-Xu+a- d?xf(xu) dso,.,
which coincides with the integral

(3.13)
o

e Xu+a,d(Rxf, 9),,

where Rxf is the 31-functioiial defined by the relation

(3.14) RI1Lf = Rxf(x))- R?xf(xo) - J AIRxf(x,) ds.

A further transformationi of the initegral in (luestion, usinig the "partial deriv-
atives" of an M-fuinctional, leads to the followviig expression for Rxf:

(3.15) Rxf = Rxf + Ex f e-Xu+a aRxf (xu) d(sp, sp)u

= Rxf +±EJ Xu a:x(RxL)(x,,) ) ,
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We put RAf = g. It is easily verified that by virtue of the absolute continuity
of the measure Px with respect to the measure P., the limits

(3.16) (p, qp),, = lim Z (S°k+1/n - SOk/n)2 = lim Z (Cak+1/n - ak/n 2

n-* k/n <u n-x k/n <u

exist in P.-measure, coiincidiing with the limits in P,-measure, as do also the
limits

(3.17) (9, ) = lim F (SPk+i/n - S°k/n)(9(Xk+1/n) - 9(Xk/l)).
nf-4o k/n<u

Coinsequently, the definition of the derivative ad/dSo does not depeind uponi
which measure, Px or Th, we are considering. Following the indicated substitu-
tions, we obtain

(3.18) Rx(Xg - Ag) = g + Ex f e-lu ad d(,, ,'p).,
Joo

or

(3.19) flx(Ag) = XKxg - g - Ex f cA" d(p4,

Siince XI?,g - g = ARxg, the last formula assumes the form

(3.20) Rf(Ag) = A R?Ag- E f eau d(S,4, -

Formula (3.20) can be regarded as an equationi definiing Ag, if RA anid A are
conisidered as knownl.

Let us note the case where g e Oj. (Since g E DA, then by our assumption
g E a)AA DA; however, the possibility that DA Q 5) is empty is niot ruled out.)
Then

(3.21) ig - Ag = lTjEx f e-"a' d(so, 4&

If (, f),= u

V(x8) ds, then

(3.22) R'EZ f e d (x,,)V (x) dut = V(x)_

and so

(3.23)
ig Ag (x)V(X).

Let

02 a a_ __
(3.24) A= aij(x) ±+ F bi(x) dd, A = ai(x)a

be the Ox1 Ox,oxsbe the inifiniitesimal operators of a pirocess ini n-dimensionial space. Ini order that
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formula (3.23) hold, one has to take ft = fo E_ ci(x,) dx('), where the xsi) are
the components of the vector x8. Then

(3.25) (p, Y)t = fo E aij(x.)cj(x,)cj(x,) ds,

arid the ci(x) are determined from the system of c(luations
n

(3.26) aij(x)ci(x) = bj(x),

sincee

(3.27) ( = aij(x_)ei(x_)d9(x_ ) ds.

Thus, in the case of diffusion processes we obtain the well-known result: if P1
and P are the measures corresponding to the diffusion processes with diffusion
matrix Jjaji(x)II and shift vectors (b1(x), * , b,n(x)) and 0, respectively, and the
processes are considered on the interval [0, T], then

(3.28) 'IP (f) ex {J E Ci ) - A E a1j(r,)cj(x,)cj(x,) ds},

where the ci(x) are determined from the system (3.26).
It is easy to see that in the case where the system (3.26) does not have solu-

tionls, P and P are mutually singular.

4. The absolute continuity of measures, corresponding to
stationary Gaussian processes

In this section we consider certain conditions which are sufficient for the
absolute continuity or for the singularity of measures, correspondilng to sta-
tionary Gaussian processes, under the assumption that the given processes have
spectral densities. These conditions will be expressed in terms of the spectral
density. The papers [13], [15], [16], [20] are devoted to various conditions for
the absolute continuity or singularity of measures. The conditionis presented
below are generalizations of these. Since the measures correspondiing to Gaussian
processes can only be either mutually absolutely continuous or mutually siln-
gular (see [11]), we shall, in what follows, for brevity use the terms "equivaleince"
for absolute continuity and "orthogonality" for singularity, as is more often
done in the literature on stationary Gaussian processes.

4.1. Sufficient conditions for absolute continuity. We shall assume that the
stationary Gaussian processes (1(t) and t2(t) are such that E(f(t) = 0; Ri(t) is
the correlation function of the process (i(t). We denote by Ai" the measure cor-
responding to the process (f(t) considered ovrer [0, T]. The fundamental theorem
which we shall use in studying sufficicnt conditionis for equivalence is the
followinig.
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THEOREM 1. Suppose theere exists a mneasurable inlegrable JunZction c(t, s) ont
[0, T] X [0, T], for which

(4.1) R2(t - s) - Rj(t - s) = foT c(t, u)Rl(u - s) du; t, s c [0, T]

and

(4.2) j' j' c(t, It)2 (It (Iat <K
Then y'i' and ,2" are cequivalent.
A proof of this theorem cani be obtaiined by using the general colnditioils for

the absolute continuity of Gaussian measures, stated, for example, in [17j.
Let us consider the case where R1(t) = e-atIl. Then, after differentiating twice

with respect to s, the integral equation (4.1) can be rewritten as the relation

(4.3) , 2 [R2(t - s) - R1(t - s)] = a2[R2(t - s)-R(t - s)] - 2a c(t, s),

and the conditioni (4.2) can be rewritten as

(4.4) f'f [a2(R2(t-s)-lI?(t-s))

-f(22(t(-ts)--1(t --s)) 2d-t ds < x.

If we use the represenltationi of the correlationi functionis in terms of the spectral
densities Rk(t) = J eiAtfk(X) dX, thenl the condition (4.4) can be rewr-itteni in thc
form

*Sil12 JAyy~~~sins T () Jl X f2(M)- J'_4/)
(4.3) -~ -l ( L-~f(X i dX d1A < cc.

7r2 I J(z2i (XA;)f (J'l)_Jl(Al)d jd

Condition (4.3) is a sufficient coiiditioni for the al)solute cotitilitity of ,u;' anid ,
if J;1() = 1/7r(a2 + A2).

Usinig this result, we can obtain various sufficient coniditionis for the equiv-
alence of 11 and p1i for all T > 0 for a larger class of processes.
THEOREM 2. Suppose there exists an entire analytic function g(X) oJ finite

exponential type, real Jor real X, and siuch that the followinlg conditions arc satisfied:

(1) g (A()2 dX < x

(2) ljim A;X2(f1J(X)-J2

(3) f 2 (f1(X) -f2()) dx <c,

f--X+- -(X _ _ > 0Jfor- all r-eal X for-(4) forsomeea > Oand C > , 2 7((a2(+-\2-)
wuhich XIX > C,
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(5) for some m > 0, lim inf |fk(X)|/g(X)m > 0.
Ixl-*oo

Then for all T > 0, jiT and H2 are equivalent.
PROOF. Let us first assume that for all real X

(4.6) 7r(a2 + X2)If1(X) - f2(X) <
2g(X)2

and that condition (4) is fulfilled for all rieal X. 'We initroduce the spectral densities

I (f(X) - f2(X)>r(a2 ± X2)1
(4.)(A)-7r(a2 ± X2) [1- 2g (X)2

(4.8) 1P)= ( + [1 +(fi(X) - f2(X))7r(a2 + X2)
(4.8) 2(x) = 7r(a2 + 2)L+ 2g(X)2 j

fli(X) + f2(X) g(_____2
(4.9) &() 2 7r(a2 + X2)
If A' and A4 are the measures correspoindinig to processes with spectral densities
sol(x) and P2(X), theni these measures will be equivalent to the measure Aa'
corresponding to a process with spectral density 1/7r(a2 + X2) (on the basis of
the foregoinig) and thus also equivalent to each other for any T. We now observ-c
that

(4.10) g(X) = f k eiMt d(t) dt, wlhere k Id(t)12 dt < x,

and k is the exponential type of the function g(X). Let i1(t) and {2(t) be processes
with spectral densities (rl(X) and P2(X), and r(t) a process with spectral density
7p(X). It is easy to see that the process

(4.11) tk (t) = fk d(s)(k(t - s + k) ds + q(t)

has spectral density fk(X). Further, the values of the process (k(t) over [0, T]
are completely determined by the values of ik(t) over [0, T + 2k] and the
values of -q(t) over [0, T]. Since the processes (k(t) are obtained by means of
the same transformation from processes to which correspond equivalent meas-
ures, then the measures ,uT and AT will be equivalent for all T.
The complete proof of the theorem follows from the fact that a change in

spectral densities which satisfy condition (5) on any finite interval does not
disturb the equivalence of the measures (this is easily deduced from the part
of the theorem already proved).
COROLLARY. Suppose that the spectral densities f1(X) and f2(X) satisfy the

following conditions: for sufficiently large X, for certain C1 and C2,

(4.12) Cl < fk(X)[Xj| < C2
and

(4.13) 1A) -f2(X)12 ddX oo and lim f1(X) - f2(X)

Then A1' and 12' are equivalent for all T.
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The proof of this assertion follows, for a > 3, from theorem 2, if we put

(4.14) J(X)f (sinXMX))m dA, m > a.

'lThis enltire funcetiont is of exponenitial type mn, atid satisfies all the coniditiolns
of theorem 2. If a < 3 (but necessarily a > 1), thlen we coiisider processes ck(t)
Nvitlh spectral denisities Jfk(X) = fk-(X)(I + X2)-->; for these processes, now, a > 3
anid the equivalence of the corresponding measures followvs from the foregoinig.
T'he processes tk(t) = (k(t) + (k(t) will have spectral densities J'k(,\), alnd the
measures corresponidinig to them will also be equivalent (since they are obtained
by the same transformation on equivalenit measures).

4.2. Sufficient conditions for orthogonality. l'o derive conditions for ortlho-
gonality, we shall use the following theorem.
THEOREM 3. If 41(t) and 42(t) are Gaussian processes on [0, T] and ,Al' an(l /k2

are the measures corresponding to them, then for the orthogonality of Al" anld Vu2 it
is necessary and suffcient that there exist a sequence of positive definite functions
gJ(t, s) on [0, T] X [0, T] such that

(Ef|f g.(t, s) [42(t)2(s) - 1(t)%i(s)] dt dsl(4.15-) lim sup -°° T > 0
n-eD 1 0If T,(t, s)%1(t)t,(s) dt ds

and

(4.16) lim D flT flT g,(t, s)%i(t)%1(s) dt ds =+x.

The necessity of the conditions of the theorem follows from general conditionis
for absolute continuity (see [11], [12], [14], [17]). The sufficienlcy follows from
the fact that the mapping of F[O,T] into the space of sequences given by

(417 l)FtJ s)x(t)x(s) dt ds - E f T fTgn(t, s)l(t)l(s) dt ds(

D fl IfT g.(t, s%)t(t)1(s) dt ds J

carries the measures Al' and MT inlto singular measures: since the deniominator
of this fraction tends to infiniity, then it converges to zero in /Al"-probability,
but Inot in,2T-probability.
A consequence of this theorem is the followinig.
THEOREM 4. Let pT, JA JA be the measuires corresponding to stationary Gaussian

processes, with spectral densities fi(X), f2(X), f3(X), on [0, 7]. IfJl(X) < f2(X\) < f3;(X),
then the orthogonality of ," and 2 implies that Of , and A">
PROOF. Let (1(t), q(t), t(t) be independenit Gaussian random processes with

spectral densities f1(X), f2(X) - fi(X), *f3(X) - f2(X). Then the process 02(t) =
t1(t) + r1(t) will have spectral density f2(X), and the process 03(t) = {2(t) + ~(t)
will have spectral densityf3(X). Let AT and jAJ be orthogonal, alnd let the sequence
of positive definite functions g,(t, s) be such that conditionis (4.15) anid (4.16)
are fulfilled. It is easy to compute that for the case at, hand
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(4.18) E f "f7 g,,(t, s)%2(t)%2(s) di ds -E f |f 9g,(t, s)%(t)%1(s) dtl (Is

= E f "
g,,(t, s) (t)r (s) di ds,

aind

(4.19) E f| |fjg,(t, s)a(i)0(s) dt ds - E i: g,,(t, s)%i(t%)t(s) dt (Is

= E lfo g,I (t, s) [ (t)>i(s) + P(i) (s)] did5

> | | g. (t, s),7(t) r7(s) dt ds > O.

Therefore, from (4.15) anid (4.16), the very same iniequalities will hold in the
presenit case for ,3(t) anid $1(t). It remains to use the sufficieincy conidition of
theorem 3.

Tlhe theorem just proved eniables us to solve the (uestion of the singularity
of the measures 1f, anid 4', Usiilg the singularity of the measures ,u and l,Ay if
fl < J] < f2 < f2 anid the spectral densities fk have a simpler form.

The followinig reiult is of a nmore specific nature.
THEOR1EM 5. Snippose the spectral densities fi(X) and f2(X) satisfy the condlitions

(1) fl(X) < f2(X),
(2) there exists a sequence of ceten entire analytic fuitnctions A,,(X) of exponential

type not exceeding T, satisfying these conditions:

(a) 0 < A,,(MX) < (f2(X) - fl(X))112 for rcal X,f1l(X)

(b) | n(z\) dX < GC for all n,

Sin4 - (\ - 0
(c) lim j /\2(X)A2(/l)j(X)jf(1) 2- \d,d11

n-xJ-o (X2 /)I
T'hen for T > 2a + 2T, ,A' and ji' are orthogonal.

PntOoF. It follows from the conditionis of the tlheorem that

(4.20) A, (X) = f t'i'8g (s) (IS,

where gui(s) is different from zero only oni [-T, r] anid f. g,g(S)12 ds < x. We
initroduce the funietioni

(4.21) G,C(t, s) = fa g,,(s - u)g,,(t + t) [a - ml|] dut.

An elementary calculation shows that

4 sin2 2 ('\X-)
(4.22) ff G,,(t, s)eixu+i-Sdt ds = A!n(X) (2-
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(the last formula shows that Gn(t, s) is positive definiite). Usiilg (4.22), we can
calculate that for T = 2a + 2T

(4.23) E T-/2J-T/2 G,,(, s)[2(t)42(S) 41(t)%(s)] dids

= a2 f [f2(X) - f;(A)] A2(X) dX,
anld

fT/2 T/2
(4.24) D I I G.(l, s) 1(t) 1(s) dt ds

J-T/2 -T/2

ri1l4 2- (X -
= 32 jj A2(X) A2(').f(X)fl(M) 2j dXd-

Thus, by virtue of the hypotheses of the theorem,

(4.25) D ff G.(t, s)%i(t)21(s) dt ds -+ .

Sinice

sin4 a (X - /A)
(4.26) A2(x) A2(M)fi(\)fl(hI) ,_-2 4 dX d,u

n (A-14
< J5A4"(X)f2(\) (X2 )4 ddM

= y 4(Af0()) dX f 4 dX,

the limit (4.13) is iii this case nlot less than f()-f()~X X

a2
(4.27) (a

-AL~~~

32f| 4 d,u

Thus the conlditionls of theorem 3 are fulfilled, anld the theorem is proved.
COROLLARY. Suppose that

(1) f2(X) .21(X);
(2) for some A < 1, some B andml> , the inequality

(4.28) s(X + h)- o%j . [A9(X) + B](l + h2??)
holds, uwhts er'
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(4.29) (X) = f2(x)-fdx).

(3) p(X)-+oo and f [f2() f1(X)l]2dX = 0;f2~(X)
(4) there exists an entire analytic function g(X) of finite exponential type such

that fk-(X) > Ig(X)12 for sufficiently large lxi.

T'hen for all T > 0, uf and AA are orthogonal.
For the proof, take

(4.30) A\(X) = kCn J y)(h) (An_2,Em+h dh
(X - h2+

(4.31) Cn =
sin2m+2 dX)

where k is sufficiently small, and apply theorem ;5.
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