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1. Introduction

1.1. Let usassume that there is defined on some probability field {Q, &, P} a
random process £(t, w), t € E, where E is some set on the line, and w € Q. We
denote by Fz the set of all functions, defined on the set E and assuming numer-
ical values. The mapping £(-, w) carries over the s-algebra ® on @ to some
o-algebra ¥ of subsets of Fr and the measure P’ on ® to a measure u on §. The
o-algebra F contains at least the sets of the form {x(-);z(t,) < x;} for ty € E
and z; real (because {w;&(t;, w) < 2} € ®) and, consequently, contains all
cylinder subsets of the space Fz. If we denote by F, the smallest s-algebra of
subsets of Fz containing all eylinder subsets of Fg, then Fy C F. As a rule the
measure u on § is completely determined by its values on &y ((4, §) is the com-
pletion of (u, Fo)). Therefore, it suffices to consider the measure u on the s-algebra
%o, which depends only on the set £ and not on the specific form of the process-
We shall call the measure u on F, the measure corresponding to the process
£(¢, w). In many problems one can identify the process and the measure, because
from the measure u one can define the probability space {Fg, &, u}, on which
the natural mapping (¢, x(-)) = x(¢) defines a random process to which cor-
responds the measure u.

If two probability measures y; and u, are defined on the s-algebra F,, then,
as is well-known, w, is said to be absolutely continuous with respect to p, if
w2(A) = 0 for all A € F for which u;(A) = 0. The absolute continuity of u.
with respect to u; is a necessary and sufficient condition for the existence of
an Fe-measurable function p(z) such that

(L.D) wa(d) = [, p@h(da)

for all A € . This function p(z) is called the density or the derivative of the
measure u, with respect to w; and is denoted by (due/dw)(x). If, for some 4,
w(d) = 1, us(A) = 0, then w; and u, are mutually singular.

1.2. Inrecent times a substantial part of the work in the theory of random
processes has been devoted to the solution of the question of the absolute
continuity (or the singularity) of measures corresponding to random processes :
One can indicate various directions, frequently having important practica
interest, in which results on the absolute continuity (or singularity) and density
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of measures in funclional spaces are used. The first results on the form of the
density of measures in functional spaces were obtained by Cameron and Martin
[1]-[8] in connection with the study of change of variable in the Wiener integral.
The Wiener integral can be regarded as an integral with respeet to the measure
uw corresponding 1o the Wiener process W(t), defined on the interval [0, 1]
(that is, a Gaussian process with independent inerements; for which EW (¢) = 0,
DWW () = t). Then if f(x) is a functional which coincides almost everywhere
with an F-measurable functional, [ f(x)uw(dz) is called its Wiener integral. In
the aforementioned papers a transformation formula was found for the integral

(1.2) [ 1 (de) = [ f@yD@pw(da),

where T is an F-measurable transformation of Fy 1) into Fpo,13, satisfying cer-
tain definite conditions (which it is not necessary to give here), and D(z) is a
functional, constructed from the transformation 7', which generalizes the coneept
of the Jacobian of a transformation in the finite dimensional case. Formula (1.2)
can be rewritten in the following way: let wuy(74) = »(1). Then v ix also a
probability measure, and

(1.3) j T2y (d) = f F(2)(da).

Consequently, [ f(x)v(da) = [ f(a)D(@)uw(dz) for all measurable functionals
f(x), which is possible only under the condition that D(x) = (dv/duw)(x).

Thus, the density of one measure with respect 1o another can be used as the
Jacobian of a transformation in a ‘“‘change of variable” in integrals with respect
to measures in functional spaces.

In the case where the process corresponding to w; has heen well-studied, one
can use the sole fact that the measure u, is absolutely continuous with respect
to p; in order to study which properties of the process corresponding to us have
probability unity. The study of these properties represents one of the important
problems of the theory of random processes, and the use of the absolute con-
tinuity of measures frequently facilitates its solution. Further, the value of the
density (dus/du;)(x) makes it possible to reduce the calculation of the math-
ematical expectations of functionals of one process to the calculation of the
mathematical expectations of functionals of the other process. For this, one
can usc the formula

(1.9 Bf(5() = Bf6 () 12 (0

where £,(-) is the process to which the measure u; corresponds. The validity
of formula (1.4) follows from the relation Ef(£,(-)) = [ f(x)ui(dx). Thus, if we
know how to calculate the mean values of characteristics of the process #(-),
we are able with the help of formula (1.4) to find alxo the mean values of char-
acteristics of the process £(-).

By means of the density with respect to a measure which is considered as
known, one can define other probability measures in a functional space. Thus,
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we arrive at one of the constructive methods of definition of a random process:
defining the progess (more precisely, the measure corresponding to the process)
by means of a density.

The densities of measures in functional spaces can be used in a natural way
in solving statistical problems involving random processes. Suppose, for example,
that the problem consists of choosing between two hypotheses concerning the
measure corresponding to a random process. Let us assume that the hypothesis
H;, (i = 0, 1) consists of the assertion that this measure coincides with x,. Then,
in the case where the measure p; is absolutely continuous with respect
{0 mo, rejecting the hypothesis Hy for (du/due)(x) > C and adopting it for
(dm/duo)(x) < C, we obtain a class of optimal criteria (to every ¢ > 0 there
corresponds one criterion). To calculate the probability of errors of the first
and second kind, we have to know the distribution of (dui/duo)(x) under the
zero and the one hypothesis. In the case where one has a family of measures
pa in the functional space and (du./dps,) exists for some a, then the latter
expression can be used to find an estimate of the parameter o by the maximum
likelihood method.

Finally, one needs expressions for the densities of measures for calculating
the amount of information which is contained in one process £(t), concerning
another process 7(t). If ug(dx) and u,(dx) are the measures corresponding to the
processes £(-) and n(-) respectively, let ue(dx) X u,(dy) be the product of these
measures in the space Fg X Fg. Let u;,(dx, dy) be the measure in the same
space, corresponding to the two-dimensional process (£(-), n(-)). The quantity
9t which is the amount of information in the process £(t) concerning 5(f) (or
vice versa) is defined by the formula

. du:
(1.5) e = / logm (@, Pusaldz, dy),

if dpg/d(ue X py) exists. (In this connection, see the monograph of Pinsker
([18], pp- 9-10).)

1.3. Usually, theorems on the absolute continuity of measures and formulas
for densities have been proved for certain specific classes of processes. The first
papers of Cameron and Martin {1]-{3], as was already mentioned, considered
the question of the absolute continuity of the measure, corresponding to the
process obtained from the Wiener process by means of a linear or nonlinear
transformation, with respect to the Wicner measure. Prohorov [4] proved the
absolute continuity of the measure, corresponding to a diffusion process with
diffusion coeflicient 1 and shift coefficient a(t, ), satisfying certain smoothness
conditions, with respect 1o the Wicner measure, and found the corresponding
density. We remark that his result involved the necessity of studying certain
sets of probability zero for the diffusion process. More general results for Markov
processes were obtained in the works of Skorohod [5], [6] and Girsanov [7];
the former considered processes having a diffusion and a discontinuous part,
and the latter considered a class of processes embracing Markovian diffusion
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processes. The absolute continuity of the measures corresponding t{o processes
with independent increments were considered by Skorohod [8], [9]. In this ¢ase
we succeeded in finding necessary and sufficient conditions for absolute con-
tinuity and in determining the density of one measure with respect to another.

Particularly, many papers have been devoted to the absolute continuity of
Gaussian measures. In the case where the Gaussian processes are distinguished
only by their mean values, this problem was considered in a paper of Grenander
[10]. Gaussian processes of general form were considered in papers of Hajek [11],
Feldman [12], [13], Rozanov [14]-[16], and Rao and Varadarajan [17]. A
number of papers have considered sufficient conditions for the absolute continu-
ity and singularity of measures corresponding to stationary Gaussian processes
(see, in this connection, Pinsker [18], Rozanov [15], [16], and Alekseev [20];
a more complete bibliography of work in this domain is to be found in the
review papers of Yaglom [19] and Rozanov [16]).

1.4. In this paper we consider some new results on the absolute continuity of
measures and the form of the density of one measure with respect to another.
In section 2 we consider some general theorems on the absolute continuity of
measures, corresponding to processes which differ only in their mean value.
Some results on the structure of the set of admissible mean values (that is,
mean values for which the absolute continuity with respect to the measures
corresponding to processes with zero mean is preserved) appear in a paper of
Pitcher [21]. Section 3 is devoted to absolute continuity for Markov processes.
Here we consider continuous processes which are more general than diffusion
processes. In section 4 we consider stationary Gaussian processes. The basic aim
here is to obtain sufficient conditions for absolute continuity and sufficient
conditions for singularity in terms of the spectral densities of the process.

2. On admissible translations for infinitely divisible distributions
in a Hilbert space

2.1. In this subsection we consider probability measures in a separable Hilbert
space H. We shall assume that every measure is defined on the s-algebra &y
consisting of all Borel subsets of H (by virtue of the separability of the space,
it is sufficient for this that every halfspace {z; (x, a) < «}, where a is an ar-
bitrary element of H, and a is a real number, belong to ®y). We mention that
with every measurable separable process 2(t), defined on a finite interval [a, b],
one can associate a measure in a Hilbert space, as long as one of the conditions

(1) P{sup l2()] < =} =1,
a<t<b

@) [ Y Ele()]? dt < o

is fulfilled.
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The convolution u; * uy of two measures which are defined on ®y can be
defined in the usual way. This convolution will be the distribution of a random
variable £, with values in H, which is equal to the sum & + & of two independ-
ent variables, where £ is a variable with values in H, having the distribution p.

A measure p on By will be called infinitely divisible, if for every n one can
find a measure ™ such that u is the n-fold convolution of the measure u®™
with itself.

It is convenient to define measures on &y by means of their characteristic
functionals:

@.1) eu(2) = [ esp {ile, )} u(da), (z € H).

Under certain conditions the characteristic functional of an infinitely divisible
measure p has the form

22)  eu2) = oxp iz, b) — 4(Az,2) + / [ef&v”—l lf’(” ] <dx)}

where b € H, A is a nonnegative definite symmetric operator on H with finite
trace, and the measure w(dx) is such that the measure

(2.3) »(C) = L T(f(ﬁ) o5 )

is finite.

Let us denote by T\, the operator of translation in H by a: Twx = x + a, and
by u. the measure defined by the formula u.(A) = u(T_,A4) (if u is the distribu-
tion of the variable £ then gy, is the distribution of the variable £ + a). We
shall be interested in admissible translations for g, which name, following
Pitcher [21], we give to those a for which u, is absolutely continuous with
respect to u. With regard to the measure u, we shall assume that it is infinitely
divisible and has a characteristic functional of the form

(2.4) e(2) = exp { / [e"‘”) 1 %] w(dx)}-

The fact is that a measure having a characteristic functional of the form (2.2)
can be represented as the convolution of a measure with a characteristic func-
tional of the form (2.4) and a Gaussian measure (whose characteristic functional
is exp {i(z, b) — 3(Az, 2)}), and the set of admissible translations for Gaussian
measures has been thoroughly studied (see [10]).

2.2.  We shall now prove a general theorem which gives sufficient conditions
for a translation by a to be admissible for a measure u having a characteristic
functional of the form (2.4).

TueoreMm 1. Suppose, for a € H, that one can find a sequence of nonnegative
Sfunctions g.(x) which are By-measurable and which satisfy the conditions

(1) lim f gu(@)am(dr) =
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2) lim / gn(@)|z|’7(dx) = 0,
n—reo

(3) there exists a monotone, differential function ¢(t), convex downwards, defined
Jor t > 0 and satisfying the conditions ¢(t) > 0, ¢(1) = 1, ¢(ts) < ¢(t)e(s),
limy. ¢(t)/t = 0 and, moreover, for t < 0, ¢(1 + 1) — 1 — ¢'(1)t = O(t?)
and

(2.5) lim sup [ [e(1 + ga(@) = 1 — ¢'(Dga(e)]n(dz) < .

Then pe ts absolutely continuous with respect to u.
Proor. If the conditions of the theorem are satisfied, then one can choose
a sequence ¢, — 0 such that

(2.6) /; e gn(@)zT(d2) — a.
Let m. be a sequence of integers such that
2.7 lim 1 (/ 1+ gn(x))r(dx)> = 0.
n—w My |z] >en
Let us introduce independent random variables with values in H: ™, ---, §0,

having the same distribution,
1

(2.8) Pt e () = — s xc(zx)m(dx) if 0¢C,
1

n) = —_——

2.9) P{& 0} =1 p /lzl oo w(dzx).
Similarly, (", -+, 9% are independent and identically distributed, with
(2.10) Pl € 0} = - g i 0&C,
n z[>en
@.11) Pi® =0} =1 — i/ (1 + ga(@))r(dz).
Man Jix| >en
We denote the distribution of £ by »™, of 9{” by #®, of the variable
— ™o .. m _ i

(2'12) o = El + + 4‘:‘111,. </le e, 1 + (.T, .’l’) 1r(dx)

by u™, and of the variable

‘ T
(2.13) o = [ )

by @™. It is easy to see that the measure u™ (™) converges weakly on cylinder
sets to the measure u(u.), since the characteristic functionals of these measures
have the form
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2.14) ue(z) = (1 + — ﬁ | (gite:d — 1)1r(dx)>m"
z| >én

_ _(z) 1
X exp{ ‘ [x[ >en 1 + (x’ x) W(dx)f

(by virtue of condition (2.7)); in exactly the same way,

(2.15) ezm(z) = exp {/l.zl >e” eittn — 1 — %) (1 + ga(x))w(dx)

(2, 7)gn(x)
+ ./lzl se 1 + (z, 7) ”(dx>} + o(1),

and
(2.16) /M»" g () (e"‘“’ —-1- 1% o2 :(-z,(;v,)x)) w(dz) — 0,
and
_(z2)
2.17) / gn(T) ———— T @2 w(dz) — (a, 2)

in view of conditions (1) and (2) of the theorem. By virtue of lemma, 3, section 2,
chapter 4 of [6],

(218) e @) = B (i 95 ks,

It is easy to compute that

(219) d (n) (E(n)) =1—-— gn(x)ﬂ'(dx)(l = Yn k)

|zl >en

+ Ynagn(&”) + 0 <-—>’
where y,x = 1if & # 0, yo = 0if & = 0. Further,

@20 Ee (%5 ) < B B[ B 55 ok ])

<Be (i 7 (e"‘)) < i Be (&5 @)

B (e -1)
< exp {mnE‘ﬁ (d w (&) — 1)}»

<op{mo (L) + [ sy}
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where (t) = (1 + 1) — ¢(1) — ¢'(1)t. Therefore,
. dﬂ(")
(2.21) lim sup E¢ (—*— (i’n)) < =
e du®
Irurther, the inequality

o . . N , X dg™
(222)  wa(C) = lim g(C) = lim Bxe(s) gog ()

<R l1m 0 sup p™(CY + lim sup/{ o (x);z(”)(dx)

now ) {z; GEW/du) (z) >R) d#

I-"(")

)

is valid for all €' in the algebra generated by the cylinder sets, which generates
the o-algebra of measurable sets. If u(C) = 0, then w.(C) = O(R/¢(R)) for
any R whatsoever; consequently, u.(C) = 0, since R/p(R) - 0as R — ».

CoroLLARY 1. Let us denote by N, the set of all elements z, for which there
cxists a set K, lying in the ball S. of radius e with cenler al zero, such that
z = [y xn(dx). Then the set Ny = Mo N. (where N, is the closure of the set N)
consists of admissible translations for the measure p.

To prove this assertion, we choose a sequence ¢, which tends to zero mon-
otonically, and sets K, C S, such that lim,_. f g, xw(dx) = a; moreover, let
¢, tend to zero monotonically, but Y 5., ¢, = +o. Then one can take g.(z) =
S CmXEa(2), where the %, are such that > %_, ¢, — 1. It is easy to construct
a function ¢(¢) for which condition (3) of the theorem will be fulfilled.

ReEmark 1. One can similarly show that if —a € N, then a is likewise an
admissible translation.

2.3. In this subsection we apply the results obtained to a specific class of
infinitely divisible distributions in H—the stable distributions. By this term
we shall mean, in analogy with the finite dimensional case, those infinitely
divisible distributions for which

< Ru(C) + —< (R) llm 1 sup Eo (

(2.23) m(A) = /m(A ) = e
where m is some finite measure concentrated on the surface of the ball S;, and
A, 1s the set on the surface of S, defined by
(2.24) A, =ryedy N {y: ly =15
THEOREM 2. Suppose that the exponent a in formula (2.23) is not less than 1

and that for given a one can find a sequence of measurable nonnegative functions
hn(x) such that

(2.25) a = lim / ha(x)xm(dr);

n-->%0

then a is an admissible translation for the measure u.
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. Proor. Without loss of generality we can assume that the h,(z) are bounded.
Choosing some ¢,, we introduce a number 8,(z) such that

(2.26) ha(x) = / dr,

nlz) T
It is obvious that one can choose the sequence ¢, so that e, < 8,(z). Let
E. = {z: 3.(x) < |2| < &). Then [g, ax(dx) = [ h.(x)em(dzx). It remains to
use corollary 1. ’

REMARK 2. It is easily seen, that the translations of the form (2.25) con-
stitute a cone in the space H, which we denote by K+. Let K~ be the cone of
vectors having the form (2.25) with negative h.(x). Then, by virtue of remark 1,
the set K~ also consists of admissible translations. Consequently, the set Hy =
K- 4+ K+, consisting of elements which are representable in the form of a sum
2~ 4+ zt, where x— € K-, 2t € K, likewise consists of admissible translations.

Let H= be the orthogonal complement of H,. Then for z € H- we have
[ (2, )h(x)m(dx) = 0 for every bounded measurable function h(z), since
[ h(x)em(dx) € Ho. Choosing h(z) = (2, z), we obtain [ (2, z)*m(dx) = 0;
hence, for all ¢ > 0, [ <, (2, ¥) w(dx) = 0. It follows from this that ¢,(\z) = 1
for all real A, that is, (2, ) = 0 almost everywhere with respect to the measure p.
On the other hand, ¢,(A\z) = ¢*¢? namely (¢, 2) = (2, 2z) almost everywhere
with respect to the measure u.. Consequently, for all z € H—, z % 0, the measures
u and g, are mutually singular.

3. The absolute continuity of measures corresponding to Markov processes

One can say that for Markov processes of diffusion type, and also Markov
processes having continuous, diffusion and jump components, the question of
the absolute continuity of measures is basically solved (see [5]-[7]). In the
book by Dynkin ([22], pp. 423-425) certain conditions are given which must
be satisfied by a random variable £, in order that it be the density of a measure
corresponding to a homogeneous Markov process of general type. In this sec-
tion also, only homogeneous processes will be considered. For these processes
we shall construct a class of variables which are densities, and we shall consider
the relation between characteristics of processes, when the density of the meas-
ure of one of the processes with respect to the other is known.

We shall consider a continuous Markov process X: {z,, {, F, P,} in some
bounded domain G, vanishing on the boundary (that is, {, the stopping moment,
coincides with the instant at which the boundary of G is reached). We consider
the class of additive functionals ¢,, satisfying these conditions:

(1) Ez¢. =0forallt >0,z € G,

(2) E.¢f is measurable in x and sup, E.¢f < «,

(3) ¢ is continuous in { with P,-probability 1 for every x € G.

We shall call the additive functionals satisfying these conditions M-func-
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tionals. If A is the infinitesimal operator of the process and f € D4, then an
example of an M-functional is the functional

@3.1) Jo=1@) ~ fa) — [} Af@.) ds.

With every pair ¢, ¥, of M-functionals one can associate an additive functional
{¢, ), for which E.¢o¢: = E{p, ¥);, and the functional (g, ¢, will be absolutely
continuous with respect to the nonnegative functionals (¢, ¢); and (¢, ¥).. If
(o, )¢ = [¢ F(u) d{e, ¢)u, then F(u) = g(z.) and we shall from now on denote
the function g(x) by (9¢/d¢)(x). All these facts are proved in my paper “On
the local structure of a continuous Markov process,” which will be published
shortly.

TroeorEM 1. Let ¢, be an M-functional. Then the quantity exp {o; — ¥, ¢);}
is such that X = {z,, ¢, 5., P,}, where P,(A) = E.xa(w) exp {¢; — 3o, o)} will
also be a homogeneous Markov process.

This theorem follows from section 10.9 of Dynkin’s book ([22], pp. 424425),
if one takes into account that

(3.2) E.exp {¢r — ¥o, o)} = L.
TFormula (3.2) can be established by using the relation

n?

(33) exp {‘pl' - %(‘P: ‘/’)f} = nli’n: sm gn =k£10 (1 + Prk+1/n — ‘Plc/n),

(the limit is in the sense of convergence in P,-probability). Further
(3.4) Ezkl;IO 1+ ert1/n — rm) = 1,

and the possibility of passing to the limit under the integral sign is guaranteed
by the fact that

3.5) E. kHO (I 4 ers1/m — @r/m) log kI-IO (I + erti/n — k/m)
i1 nt
=0 (E: kl'Io (1 + ert1/n — r/m) 2o (@re1/m — (Pr/n)2>
= r=j

i—1
=0 (Ezlgo (1 + Ck+1/n — ﬂak/n)¢(xj/n)> < Sl:p I¢(x)l)

where ¢(z) = E.¢f.

Since the &, are such that E¢, = 1 and E¢, log & < sup, |¢(x)], then
E.lim,w & = lim,—.E.£, = 1. Thus, formula (3.2), and with it theorem 1,
are proved.

We shall now study the relation between characterlstlcs of the process X =
{z., ¢, §1, P.} and the process X = {z, {, F, P.}. To this end we shall consider
the resolvent B, of the process X:

(3.6) Bf@) = B, [" e dt,



PROBABILITY MEASURES 173

where E, is the expectation with respect to the measure P,. We observe that

3.7) Elexp {or — 3o, o)} 18] = exp {o0 — Ko, o))
Therefore
(38) Baf@) = E. [[" (@) exp o1 — e, o)} e

=E, L” exp {—M + ¢ — ¥eo, o)} f(x) dt.

We further use the easily deduced relation
(3.9) e =1+ [ e=des,

where o, = ¢, — 3{¢, ¢)i. Denoting by R, the resolvent of the process X, we
obtain

(3.10) Bf(x) = Ruf(x) + E, L M) ﬁ) Lo de,
= R\f(x) + E, ﬁ) " emmwra | f ® f(r)eM dt] de.
= Bf(@) + Eu [ e MRy f(@use) dow

We note that for an M-functional, E, ﬂ) ® g(u) de, = 0 for every F,-measurable

function ¢(¢). The meaning of

(3.11) [ ettt f@so) de

is that in the Stieltjes sums, R)f(z,) is taken at the point wusyq, if the increment
@ur,s — ¢u, is considered. Therefore, the last integral reduces to the integral

(3.12) fo * gMtan dR, f(za) de,

which coincides with the integral
© P
(3.13) /;) et d(Ryf, @
where I?x\f is the M -functioﬁal defined by the relation
/\- u
(3.14) R = Ryf(x,) — Raf(xo) — fo ARN(x,) ds.

A further transformation of the integral in question, using the ‘“partial deriv-
atives” of an M-functional, leads to the following expression for R,f:

(3.15) R\f = R\f + E, ﬁ e~ uta %f (x.) dle, )u

)

- N
- RJ+E, / o= O () e, o).
0 d¢
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We put Ryf = g. It is easily verified that by virtue of the absolute continuity
of the measure P, with respect to the measure P,, the limits

(3.16) (0,00 = lim 3 (ert1/n — oam)? = im 3 (akt1/n — arm)?
n—o k/n<u n—ow k/n<u

exist in P,-measure, coinciding with the limits in P,-measure, as do also the
limits
(3.17) G, e = lim 3 (ext1/n — G/n)(@@rt1/0) — 9(@i/n))-

n—wo k/n<u

Consequently, the definition of the derivative d§/d¢ does not depend upon
which measure, P, or P,, we are considering. Following the indicated substitu-
tions, we obtain

~ ~ © )
(3.18) R0g— 40 = g + B [ e Late, ),
0 @
or
(3.19) R\(Ag) = \Ryg — g — E,/ e ggd(«;, @
0
Since MRyg — g = AR\g, the last formula assumes the form
(3.20) Ry(Ag) = ARyg — Ex-/(; e ::Z d{e, ¢)u-

Formula (3.20) can be regarded as an equation defining Ag, if By and 4 are
considered as known.

Let us note the case where g € . (Since g € D4, then by our assumption
g € D4 N Di; however, the possibility that D4 M D4 is empty is not ruled out.)
Then

- e ° ag
21 Ag—Ag =R lEzf 9 o o
(3.21) g g X s ¢ ae X

If (¢, ¢)u = };u V(x,) ds, then

(3.22) R{‘E,/g e (;lz (x)V(x,) du = g—z @)V (x),
and so
(3.23) dg— Ag = (;iz @)V ().
Let
-~ 92 9 9’
(3.24) A= % a;;(x) 9. 0%, + Z} bi(x) v A= 121 ai;(x) 3z, 07,

be the infinitesimal operators of a process in n-dimensional space. In order that
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formula (3.23) hold, one has to take ¢, = [¢ 3 i ci(x.) dzl®, where the z{’ are
the components of the vector z,. Then

(3.25) (o, @)t = j; ‘ 1272 aij(xs)ci(xs)ei(zs) ds,
and the ¢;(z) are determined from th,c system of equations
(3.26) i ai;(x)ei(x) = b;(x),

since

3.27) @, 0 = / 2 ag(x)cd(a. ) (x ) ds.

Thus, in the case of diffusion processes we obtam the well-known result: if P
and P are the measures corresponding to the diffusion processes with diffusion
matrix ||a;;(x)]| and shift vectors (bi(z), - - -, b.(z)) and 0, respectively, and the
processes are considered on the interval [0, 7'], then

828 P weo{ [ Tewnr -1 [T asmedm a,

where the ¢;(2) are determined from the system (3.26).
Tt is easy to see that in the case where the system (3.26) does not have solu-
tions, P and P are mutually singular.

4. The absolute continuity of measures, corresponding to
stationary Gaussian processes

In this section we consider certain conditions which are sufficient for the
absolute continuity or for the singularity of measures, corresponding to sta-
tionary Gaussian processes, under the assumption that the given processes have
spectral densities. These conditions will be expressed in terms of the spectra]
density. The papers [13], [15], [16], [20] are devoted to various conditions for
the absolute continuity or singularity of measures. The conditions presented
below are generalizations of these. Since the measures corresponding to Gaussian
processes can only be either mutually absolutely continuous or mutually sin-
gular (see [11]), we shall, in what follows, for brevity use the terms ‘“‘equivalence”
for absolute continuity and ‘“orthogonality” for singularity, as is more often
done in the literature on stationary Gaussian processes.

4.1. Sufficient conditions for absolute continuity. We shall assume that the
stationary Gaussian processes & (¢) and £(t) are such that E£(¢) = 0; Ri(¢) is
the correlation function of the process £:(t). We denote by uf the measure cor-
responding to the process £,(t) considered over [0, T']. The fundamental theorem
which we shall use in studying sufficient conditions for equivalence is the
following.
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TrEOREM 1. Suppose there cxists @ measurable inlegrable function c(l, s) on
[0, T] X [0, T, for which

4.1) Ro(t — s) — Ryt — 5) = [) T e(t, wR(u — ) du; t,sel0,T]
and
(4.2) AT/:)T c(t, W) dtdu < =.

Then ui and w3 are equivalent.

A proof of this theorem can be obtained by using the general conditions for
the absolute continuity of Gaussian measures, stated, for example, in [17].

Let us consider the case where R,(t) = e—¢. Then, after differentiating twice
with respect to s, the integral equation (4.1) can be rewritten as the relation

2
(4.3) 5‘1—2 [Ra(t — ) — Ra(t — 8)] = @[Rot — 5) — Ralt — 5)] — 2ac(l, s),
and the condition (4.2) can be rewritten as

(4.4) L g ﬁ) Tl (ot — ) — Rt — 8))
— (Rl — ) — Ryt — )P dlds < =.

If we use the representation of the correlation functions in terms of the spectral
densities Ri(t) = [ eMfi(\) d\, then the condition (4.4) can be rewritten in the
form

- sin? ; fz(A)—/O\)f(#) filw)
(+3) // = ) Sy s

Condition (4.5) is a sufficient condition for the absolute continuity of u{ and u?,
if fi(A) = 1/w(a® 4+ N\?).

Using this result, we can obtain various sufficient conditions for the equiv-
alence of uf and pf for all 7 > 0 for a larger class of processes.

THEOREM 2. Suppose there exists an entire analytic function g(\) of finile
exponential type, real for real N, and such that the following conditions are satisfied:

) 7 g0 dx <,
MO = O _

(2) lim

powe g
MK — (N)?
3) / BaPTONT d\ <
(4) for somea > 0and C' > 0, ﬁQ)——},’(}\) a? O_\Z ) > 0 for all real X for

which [N > C,
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(5) for some m > 0, h[{In inf [fe)]/g0)™ > 0.

Then for all T > 0, ul and w3 are equivalent.
Proor. Let us first assume that for all real A

4.6) ot £ MI0) = SO
and that condition (4) is fulfilled for all real \. We introduce the spectral densities
¢ a0 = [ PR

(4.9) ) = f1<%) +fz(x) T((gofm

If uZ and pl are the measures corresponding to processes with spectral densities
ei(\) and ¢:()\), then these measures will be equivalent to the measure p;,
corresponding to a process with spectral density 1/x(a® + A?) (on the basis of
the foregoing) and thus also equivalent to each other for any 7. We now observe
that

(4.10) g\ = [fk ™ d(1) dt, where ffk ld()2 dt < o

and k is the exponential type of the function g(). Let £(¢) and £(¢) be processes
with spectral densities ¢;(A\) and ¢.(\), and 5(f) a process with spectral density
¥(\). It is easy to see that the process

(4.11) &) =[5 A0k — s+ 1) ds + 20)

has spectral density fi(\). Further, the values of the process £(t) over [0, T]
are completely determined by the values of &(t) over [0, T 4 2k] and the
values of 5(t) over [0, T]. Since the processes &(t) are obtained by means of
the same transformation from processes to which correspond equivalent meas-
ures, then the measures ui and pJ will be equivalent for all T.

The complete proof of the theorem follows from the fact that a change in
spectral densities which satisfy condition (5) on any finite interval does not
disturb the equivalence of the measures (this is easily deduced from the part
of the theorem already proved).

CoroLLARY. Suppose that the speciral densities fi(\) and fo(\) satisfy the
following conditions: for sufficiently large \, for certain Cy and Cb,

<4 12) €1 < SN < C
(4.13) / |f1(1>\)+ l@)p d\ <, and lim |f1(1k)+ l{im

Then uf and ui are equivalent for all T.



178 FIFTH BERKELEY SYMPOSIUM: SKOROHOD

The proof of this assertion follows, for @ > 3, from theorem 2, if we put

(4.14) g(\) = / (Si“}\("_ - “)>m \/Wdu, m> a.

This entire function is of exponential type m, and satisfies all the conditions
of theorem 2. If @ < 3 (but necessarily « > 1), then we consider processes &(t)
with spectral densities fe(A\) = fr(\)(1 + \2)~!; for these processes, now, a > 3
and the equivalence of the corresponding measures follows from the foregoing.
The processes (1) = &(t) + &(t) will have spectral densities fi(\), and the
measures corresponding to them will also be equivalent (since they are obtained
by the same transformation on equivalent measures).

4.2. Sufficient conditions for orthogonality. To derive conditions for ortho-
gonality, we shall use the following theorem.

TurorEM 3. If &(t) and &(t) are Gaussian processes on [0, T and ul and ul
are the measures corresponding fo them, then for the orthogonalily of ui and w3 it
1s mecessary and sufficient thatl there exist a sequence of positive definite functions
ga(t, s) on [0, T] X [0, T] such that

B[ e 9e086) — a06E)] dds)
(4.15) lim sup T >0
s D[ [, 9.t 980 dt ds

and

(4.16) lim D LTI;T g (t, S)E()E1(s) dt ds = +<.

n—wo

The necessity of the conditions of the theorem follows from general conditions
for absolute continuity (see [11], [12], [14], [17]). The sufficiency follows from
the fact that the mapping of Fio 7} into the space of sequences given by

.LT LT gn(t, s)x(t)x(s) dtds — E LT LT gn(t, ) E(1) :(s) dt d_gl
b }:)T ﬁ)T ga(t, $) (1) E1(s) dt ds J

carries the measures p] and pf into singular measures: since the denominator
of this fraction tends to infinity, then it converges to zero in u{-probability,
but not in u-probability.

A consequence of this theorem is the following.

THEOREM 4. Let ul, uk, u” be the measures corresponding lo stationary Gaussian
processes, with spectral densities fi(N), f2(N), f3(N), on [0, T']. If fi(N) < fo(X) < f5(N),
then the orthogonality of u% and u}, implies that of u}, and u}.

Proor. Let &(1), 5(f), ¢(t) be independent Gaussian random processes with
spectral densities fi(\), f2(\) — fi(A), fs(A) — fa(A). Then the process &(t) =
£(t) + 5(t) will have spectral density fo(\), and the process £&(t) = £(¢) + ¢(0)
will have spectral density f(\). Let u} and u}, be orthogonal, and let the sequence
of positive definite functions g,(t, s) be such that conditions (4.15) and (4.16)
arc fulfilled. Tt is casy 1o compute that for the case at hand

417) a2 —
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T o
e Ej; j;) 0ullr )6(e) dids — E ﬂ)[ ﬁ)j g (t, s)E () &1(s) dt ds
T T
=E ./0 ﬁ) gu(t; $)n(O)n(s) dt ds,

and
(4'19) E j;)T ‘/;)T gn(f, 6)57(!)50(6) dids — E '/;]T/;T {/,,([, 8)21(021(8) dit ds
=B [ [" 0.t 9)[n(tmn(s) + 0] dt dg

T Al
2 EL ﬁ)l gn(t, s)n()n(s) dt ds > 0.

Therefore, from (4.15) and (4.16), the very same inequalities will hold in the
present case for £(¢) and £(¢). It remains to use the sufficiency condition of
theorem 3.

The theorem just proved enables us to solve the question of the singularity
of the measures uj; and uf, using the singularity of the measures p} and uf, if
i £Ji £ J: < f. and the spectral densities fi have a simpler form.

The following result is of a more specific nature.

THEOREM 5. Suppose the spectral densities fi(\) and fo(N) satisfy the conditions

1) LN < V),

(2) there exists a sequence of even entire analytic functions A,(\) of exponential

type not exceeding T, satisfying these conditions:

(a) 0 <A\ <L (f2(>\)j ()\];1()\))1/2 for real \,

(b) f_: A2\ dN < o for all m,

© sind & 5 (N — )
(e) li_rg AT VAR (W)f (N S (w) _'()\___JT—‘D‘ dpy = +w.

Then for T > 2a + 27, u}, and u}, are orthogonal.
Proor. It follows from the conditions of the theorem that
(4.20) AN = / M5g,(s) ds,

where ¢,(s) is different from zero only on [—7, 7] and f°_°,° lga(s)]2ds < ». We
introduce the function

(4.21) G, s) = j'ja gu(s — wWg.( + w)a — |u|] du.
An elementary calculation shows that

4 sin? § (N — )

(4.22) // G (t, s)eMFiss dt ds = A, (N) A (p) T =
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(the last formula shows that G,(¢, s) is positive definite). Using (4.22), we can
calculate that for T = 2a + 2r

@23) B [70 [T Gt 9)le®a) — &0&E)] dids
= a* [ [RO) — )] 430 ax,
and
T/2 T/2
(424) D f / Grlt, )B(OB() dt ds
-1/2 J~T/2

sint 2 N — )

=32 // AZ(N) AZ()fi(Nf1(w) TZ__“)_ d\ du.

Thus, by virtue of the hypotheses of the theorem,

(4.25) D j [ Golt, )EWDE(s) di ds — +oo.
Since

sin* Q N —w
(4.26) // AR(N) Ar(w)f (N f(w) BT d\ du

‘ sin4(—2l )]
< // A(NfI(N) R p—— d\ dp
.G
S Q M
= / AsOVEN) dA/ i du

51n4‘ i
< [ =20 [ 1o — o1 8200 o

the limit (4.15) is in this case not less than

2
(4.27) a

., a
sint 5 M

32 / du

”4

Thus the conditions of theorem 3 are fulfilled, and the theorem is proved.
COROLLARY. Suppose that

@) foN) = fi(N);
(2) for some A < 1, some B and m > 0, the inequality

(4.28) le(h + h) — ¢()] < [Ae(\) + B + k)

holds, where
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V Q) = f1(\),
fiN) ’
3) e(\) o (md. /_: [ﬁ(x—)ﬁ?)\-)fl@rd)\ = o;

(4) there exists an entire analytic function g(\) of finite exponential type such
that fi(N) > |g(\)|2 for sufficiently large |\

Then for all T > 0, uf, and u}, are orthogonal.
IFor the proof, take

“29) (N =

" sin?m+2e(\ — h)

(4.30) A.(N) = kCy / L o) =y

7 gin?mt2e) —1
(4.31) C, = ( /_n %d)\) ,

where k is sufficiently small, and apply theorem 5.

dh,
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