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1. Introduction

Advanced integral calculus in infinite dimensions was initiated and developed
by R. H. Cameron, W. T. Martin, and their associates in a sequence of papers
beginning in 1944.
The underlying space for the integral calculus was the Banach space C con-

sisting of the continuous functions on [0, 1] which vanish at zero. The space C
carries the probability measure induced by a one-dimensional Brownian mo-
tion. The resulting measure space, generally known as Wiener space, has topolog-
ical, linear, and measure theoretic structures which are well related to one
another for the purposes of analysis over C.
The subset C' consisting of the absolutely continuous functions in C with

square integrable derivative forms a Hilbert space with respect to the inner
product (x, y) = fJ x'(t)y'(t) dt. Here a prime denotes derivative. Although C' is
a set of Wiener measure zero, the Euclidean structure of this Hilbert space
determines the form of the formulas developed by the above authors, and, to a
large extent, also the nature of the hypotheses of their theorems. However, it
only became apparent with the work of I. E. Segal [11], [12], dealing with the
normal distribution on a real Hilbert space, that the role of the Hilbert space C'
was indeed central, and that in so far as analysis on C is concerned, the role of
C itself was auxiliary for many of Cameron and Martin's theorems, and in some
instances even unnecessary. Thus Segal's theorem ([12], theorem 3) on the
transformation of the normal distribution under affine transformations, which
is formulated for an arbitrary real Hilbert space H, extends and clarifies the
corresponding theorem of Cameron and Martin [1], [2] when H is specialized
to C'. This is an extreme case in which consideration of the Banach space struc-
ture of C, as opposed to merely the Hilbert space structure of C', contributes
little or nothing to a proper understanding of the above theorem. For some other
theorems, however, the role of C is not negligible, but nevertheless, it is the
relation between C and C' which remains important. Specifically, C is the com-
pletion of C' with respect to a norm (the sup norm) on C' which is much weaker
than the Hilbert norm on C': 11x112 = fl x'(t)2dt and enjoys the property of
being a measurable norm on C'.

In this paper we shall abstract this relationship by replacing C' by an ar-
bitrary real separable Hilbert space H and the sup norm by its generalization-
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a measurable norm on HI. Our priincipal result asserts that on the collmpletioil
of H with respect to a measurable norm the normal distribution becomes
countably additive. Our interest in this type of study arose from considerationi
of regularity theorems for potential theory on a Hilbert space. Such regularity
theorems will be studied elsewhere. It turnis out that the measurable normns are
the right norms with respect to which one should define Hlder coiiditionis.
Abstract Wiener spaces thereby enter naturally inlto this context.

2. Preliminaries

In this section we shall sturvey some of the basic nlotionls coicerniilng iintegra-
tion over locally convex vector spaces and Hilbert space in particular. Much
of the theory of integration over infiniite dimensionial linear spaces has been
surveyed by Prohorov [9]. Consequently, we shall restrict ourselves to material
needed in this paper and largely disjoint from that surveyed by Prohorov, and
we shall rely oIn his paper when necessary.

Let £ be a locally convex real linear space and 2* its topological dual space.
For each finite dimensioinal subspace K of £*, we denote by 7rK the linear map
of £ oInto the dual space K* of K given by rK(X))Y = (K, x) for x in £ and y
in K. Let a1 be the collection of subsets of £ whichl have the form C = 7rK-'(E)
where E is a Borel set in K*. Such a set C will be called a tamne set (also known
as a cylinder set) and will be said to be based oii K. The class (R is a ring and the
family SK of sets in 6R which are based oIn K is a a-ring.

DEFINITION 1. A real-valued nonnegative fitnitely additive function ,u on 61 is
called a cylinder set mtieasutre on 2 if ,u is countably a(l(litive on each of the a-rings
SK and p(£) = 1.
DEFINITION 2. A tamie funtction on1 2 is an1 imeasIturable function f suich tha(t

f = g o irK for somtie finite dimnensional subspace K C £* and( futnction g on K*.
Such a functiont f is sai(l to be based on K.

It is not hard to see that if f is a tamne functioni based on K, theni f h2as the
form f(x) = p(yi(x), * * y.(x)) where yi, y, is any basis of K and p is a
Baire function on Rn.
A cylinder set measure is referred to by Prohorov [9] as a weak distributioni

which terminology we shall use for ani equivalent but somewhat differently
formulated coIneCpt. If p is a cylinder set measure on 2 and yi, * - *, y" is a finite
set, of elemenits in the finiite dimensional space K C X*, then ym, ,*Y, nmay be
regarded as ranidomii v-ariables oni the probability space (2, SK, u). Tllus wlle
dealinig with tame functionis on 2 which are based on a fixed finite dimenisional
subspace of £*, one is in a countably additive situation. It is sometimes neces-
sary to deal with other functions, however, and the first step toward achieving
a suitable degree of countable additivity is to realize all the elements of £*
simultaneously, as random variables on a (countably additive) probability
space (S2, m). Mlore pirecisely, this means constructing a linear map F from £*
to the linear space of ranidoii variables (tlhat. is, n-waslirable fuiictiomis miodtlo
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iiull functions) over a probability space (Q, mtt) with the property that for any
finite set of elements yi, * * *, yn in £*, the random variables F(yi), * * *, F(y")
on Q2 have the same joint distribution as do yi, * * *, y,. as random variables over
(2, R, A). The existence of such a map F is easily established in a variety of
ways (for example, take a Hainel basis ea of £* and apply Kolmogorov-'s theorem
to the random variables e,,). The space (Q, ni), and the map F, is of course not
ulli(ue, but any one with the above property will do. Moreover, giveni the
map F, the cylinder setimeasure Au can clearly be recovered fromii it. Tlitus, a
cylinder set measure is equivalent to a weak distributioni in the following selnse
of this phrase.

DEFINITION :8. A weak (listributiont over £ is anl equiivalenlce class of linear
maps F from £* to the space of random variables over a probability space (Q, in)
(depending on F). Two such maps Fl, F2 are equivalent iffor any finite set y1, *, IJ,,
int S* the joint distribution of Fj(y1), - *, Fj(y,,) in R,, is the same for j = 1 or 2.

This definition is due to I. E. Segal [11].
Of the two e(quivalent concepts-weak distribution and cylindei set measure--

it is sometimiies more convenient to use one and sometimes the otlhwer, anid somlle-
tim-les it is convenient to use both, as in this paper.
The weak distribtutioni which will be of iinterest to Us in the reimiainder of

this paper is the normiial distribution oni a real Hilbert space H definied as fol-
lows. If F is a representativ-e of the normilal distribution, theni for each element y
in H*, F(y) is iioirmally distributed with mean zero and varianice Ilyll2. As is
well knowni, this implies that if yi, , 1Y, are orthogonial, theni F(yi), * *, F(y,,)
are stoclhastically indepenident. A tame set in H can be described as a set of the
formi C = ]'-'I](E) where P is a finite dimenlsionial orthogonlal projection on II
with r-anige L, say, and E is a Borel set in L. The cylinder set measure v associ-
ated with the normal distribuitioni is called Gauss measure on II, anid for the
abov-e taame set (C we lhaxve

(2.1) V(C) = (2ir)-j'2 f e-!'xi:/2 dx

wlhere n is the dimenlsion of L. The set function v is not countably additive on 6t
when H is infinite dimensional.

W\e consider a fixed representative F of the normal distribution. If f is a
tamie function onii , then f(x) = (r(yi(x), * *, y,,(x)) as noted above. Then
T = ,(F(y.), * * , F(y,,)) is a random variable on Q such that f, f (dv = f!m f d,n,
as follows readily fromn the definitioiis. The map f - is an isomorphism from
the algebra of conltinluoUs (real- or complex-valued) tame functionis on H ilnto
the algebi-a of ranidoml- variables on Q. The second step in achieving a useful
degree of countable additivity is to extend this isomorphism to functions other
than tame functions. This is our main objective in the remainder of this section.
This isomorphism does not extend to all continuous functions on H in a reason-
able manner. However, we shall describe a class of continuous functions to
which this isomorphism does extend. Tame functions play a basic role similar
to thalt of simiiple funlctionis in general measure theory. If for a given function f
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on H we wish to give meaning to f as a random variable on Q, we must approx-
imate f by a sequence fn of tame functions such that fn, converges in some sense
on Q. Now if f is continuous, then one can manufacture a sequence fn of continu-
ous tame functions which converge to f on H by taking any sequence P. of
finite dimensional projections which converge strongly to the identity operator,
and define fn(x) = f(Pnx). This appears to be the easiest systematic way of
constructing such a sequence. Unfortunately, the sequence f,j of random vari-
ables need not converge in probability on U. For example, if f(x) = exp [ilIx112]
and the sequence P,, is taken as an increasing sequence, then for n > m we have

(2.2) If.(x) - fm(x)l = lexp [ill(Pn - Pn,)xll2] - 11,
and it is readily seen that the probability that this is greater than a given E

depends only on the rank of P, - Pm, and in fact, it approaches one as the
rank of Pn- Pm goes to infinity. Even when f,, does converge, it may converge
to zero though f may be nowhere zero. This is the case with the function f(x) =
exp [-llxll2] for which a simple computation yields E(f(Px)-) = 3-m12 where m
is the rank of P and E denotes expectation.
We proceed to describe a class of functions for which the associated sequence

(f a Pn)- always converges in probability to a random variable f such that the
map f --+f has suitable isomorphism properties. All of the following is taken
from [4]. Some of the above material has also been surveyed in [6].

DEFINITION 4. A seminorm lixIll on H is called a measurable seminorm if for
every real number e > 0 there exists a finite dimensional projection PO such that
for every finite dimensional projection P orthogonal to Po we have

(2.3) Prob (IlPxllI > E) < e

where IlPxIll' denotes the random variable on Q corresponding to the tame function
lIPxIll, and Prob refers to the probability of the indicated event with respect to the
probability measure m associated with the normal distribution.
We note that the condition (2.3) can also be written v({x: IIPxlll > e}) < e

where v is Gauss measure on H.
A measurable norm is a measurable seminorm which is a norm.
EXAMPLE 1. If A is a trace class operator, that is, nuclear operator, on H

and is nonnegative, then llxlll = (Ax, x)112 is a measurable seminorm. It is a
measurable norm if Ax = 0 implies x = 0. This type of norm has proven sig-
nificant in harmonic analysis on a Hilbert space [5], [9], [10].
EXAMPLE 2. Let H be the Hilbert space C' described in the introduction.

If llxlll = sup {Ix(t)I: 0 < t < 1}, then llxlll is a measurable norm on C'. The
completion of C' in this norm is identifiable with Wiener space C.
Denote by ff the directed set of finite dimensional projections on H directed

by inclusion of the ranges. The significance of measurable seminorms for the
proposed extension of the above described injection f -f is contained in the
following two theorems and definition.
THEOREM. If llxili is a measurable seminorm on H, then the net IlIPxll' con-

verges in probability on Q as P converges to the identity through iY.
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We denote the limit in the theorem by lix Il i-.
The topology 3:m on H determined by all measurable seminorms is called the

measurability topology.
DEFINITION 5. A function f on H is called uniformly continuous near zero in

3m(u.c.n.0 in 3m) if there exists a sequence IIxI!n of measurable seminorms such that
lix lZ converges to zero in probability, while f is uniformly ccntinuous in the topology,
3,mon {x: IIxIIn < 1} for each n.
In a finite dimensional space this definition reduces to ordinary continuity

since llxIl is measurable in that case, and any continuous function is uniformly
continuous on each of the sets {x: llxll/n < 11.
THEOREM. If f is a complex-valued function on H which is u.c.n.O in 3m.

then the net (f o P)- of random variables on Q converges in probability as P -+ I
through i. If f denotes the limit, then f = 0 a.e. if and only if f(x) is identically
zero on H.
The map f --+f from the algebra of bounded real functions on H which are

u.c.n.0 in 3m to random variables is an algebraic isomorphism. Thus the ex-
pectation of f with respect to the normal distribution may be defined as the
integral of f over Q:

(2.4) E(f) = ff(w)m(dw).

The expectation of f thus defined is clearly independent of which representative
of the normal distribution is used.

It is a fairly immediate consequence of the definition of measurable seminorm
that if there exists a measurable norm on H, then H must be separable.

3. Abstract Wiener spaces

Let H be a real separable Hilbert space and denote by llxlll a measurable
norm on H. Let B be the completion of H with respect to 11- 111. Then B is a
Banach space, and H is dense in B. If y is in B*, the topological dual space of B,
then the restriction of y to H is continuous on H, since a measurable norm on H
is always weaker than the H norm by corollary 5.4 of [4]. Moreover, if y = 0
on H, then y = 0 on B. Hence, restriction to H is a one-to-one linear map, of
B* into H*. We shall thus identify B* with a subset of H*, but to avoid con-
fusion, we will not identify H* with H. The space B* is dense in H* since B*
separates points of H.
The normal distribution on H induces a weak distribution on B simply by

restricting the defining map F to B*. The weak distribution on B so obtained
defines a cylinder set measure u on the ring 6R of tame sets of B.
THEOREM 1. Let H be a real separable Hilbert space. Let llxll1 be a measurable

norm on H and denote by B the completion ofH in this norm. Let jA be the cylinder
set measure on the ring R of tame sets of B induced by the normal distribution on H.
Then ,u is countably additive on (R.
LEMMA 1. Let lx1lll be a measurable norm on H. Let {aj}1jo,i,... be an arbitrary
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scquence of strictly positive real numbers. Thent there exists a sequence {JQj=0,.
of mutually orthogonal finite dimensional projections on HI with sum equal to the
identity operator such that the sum ,_,o ajllQjxlll converges pointwise on H to a
measurable norm IIX112.

PROOF. We remark that the interest in this lemmli-a lies in the case where
the aj approach +oX.

Iet &2 denote the measure space of some representative of the normal dis-
liiibutiion on H. From the definition of measurable norm there exists for each
int.eger n > 1 a finite dimensionial projection P,, on H such that

(8.1) 'Prob (IIP1xll' > 1/(an2'')) < 277

whenever P is a finite dimensional projection orthogonal to P,n. Moreover, the
projections PF, may be taken to be increasing and to converge strongly to the
identity operator.

Let. Qo = Pi and Q., = P,+± - P,, for n = 1, 2, . Then the projections Q,,
are mutually orthogonal finite dimensionial projectionis and F7=o Qj I. More-
oxver, for n > 1, Q,n is orthogonal to P,,; so

(3.2) Prob (aJI1Q7,,Iil > 2-t) < 2-, n = 1, 2,

If e > 0 and 2-k < E, then
m\ 7n ~ ~~~~~m

(3.3) l'rob E,_IJQ,,xI1l > < Pirob E_ aJiQ,x1i > YE 2-
(n=k+1 n=k+l 77 k+l

m

< E_ Prob (aJ1,,Al7,ll > 2-1)
n k+1

< C.

llence the series _7=o a,JLIQ,XIIj converges in probability. Let h denote the sum.
In view of corollary 4.4 of [4], it suffices to show that the essential lower

bound of h is zero in order to show that the series ,<=o anl1Q,,xI1, converges on II
to a measurable seminorm lIX112- Let E be a strictly positive real number. For a
sufficiently large integer N, we have Prob (-n>N an1iQ,,xil < e/2) > 0. Let

f= ,n>N a,,IIQ,.x11i' anid let a = 1'rob (f < e/2). Let n= ,=oa,=IQ,LxIIi and
let b = Prob (g < E/'2). Then b > 0, since g is a seminorm based on a finite
dimensional subspace of H. Since the projections Q,, are mutually orthogonal,
the random variables f and g are mutually independenit. Moreover, h = f + g.
Thths,
(3.4) Ilrob (h < e) = I'rob (f + g < e)

> I'rob (f < e-f2 anid g < E,'2)
= Prob (f < e/2) Prob (g < E/2)
= ab

> 0.
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Finally wve note that lixll, is a norm, for if x F 0, thein for some j, Qjx $ 0 and
consequently, 1IX112 $ 0-
LEMMA 2. Let llxlli be a measurable 7rwrm on If and let B be the completion ofH

in this norm. There exists a measurable nornm 11x112 on H such that for each real
nuber r > 0, the closure in B of the set Sr = {x e H: lIx112 < r} is compact in B.
PROOF. Let {aj!j=o,j,... be a sequence of strictly positive real numbers such

that Z=o aj' is finite. Let 11x112 = Z_7o ajllQjxlll where the Qj are those projec-
tionis giveni in leilmma 1.

It suffices to show that if x,, is a sequence in H with 11x,J12 < r for n = 1, 2,
tleii some subsequence is Cauchy with respect to 11- 111. Now the restriction of
lIQjxlll to the range Kj of the finite dimensional projection Qj is a norm on K
equlivalent to the Euclidean norm, and since IIQjxnll1 < raj-1 for all n, there is
a subsequence of the sequence xw, such that Qjxn is Cauchy with respect to 11-I I.
Biy diagonalization and dropping to a subsequence, we may assume that Qjxn
is Cauchy for all j. A measurable norm is strongly continuous by corollary 5.4
of [4]. Consequenitly, lix,, - xIl, <. Yo IIQj(x,,- x,)I1j. Each term of the
sum goes to zero as n and nt go to infiniity and is dominated by 2rap- . Hence,
lx,, - Xmlll 0.
PROOF OF TIlEOItENI. The proof followvs a by low wvell-known pattern. The

set fucietioin ji is countably additive on @. if and only if it is continuous from
below at B. For a cylinder set measure, the mcasure of a tame set can be approx-
iniated fiom above by open tame sets. Consequeintly, Mu is countably additive
if anid only if for every covering of B by a sequence of open tame sets Tn there
holds _n= (',,) > 1. In order for this conditioni to hold, it is sufficient that
for every real number e > 0 there exists a weakly compact set Cf in B such that
,u(T) < e for- any tame set Y disjoint from C,. Inideed, if T,, is a covering of B
by a sequence of openl tame sets, then sinice the Tn are also weakly open, a
finite number, say T1, *, 'v, cover CE, and conisequently,

(3.5) E (',)> E A(7',,)N

I'1(U Bn ) 11
fl=1 ~ ~ z=

>-

which in view of thle arbitrariniess of E, implies that n ,(>T,)2 1.
Before proceeding further, we remark that the preceding argumeiit is the

basic one used in much of the literature [3], [7], [8], [9], [13] to prove countable
additivity of cylinder set measures. When the underlying space B is itself a dual
space of a Banach space or nuclear space, the sets Cf are then taken as closed
balls in B. However, in the present case, B is not necessarily a duial space, since
examlple 2 of the precc(ling sectioni shovs thlat Wiencer space is a special case
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of the space B. Our proof from here parallels Wiener's proof [13] of the countable
additivity of Wiener measure. The sets Cf will be strongly compact.

Let lIx112 be the measurable norm on H whose existence is asserted in lemma 2.
Given E > O, choose r such that Prob (I1x112 > r) < e. Let Cf be the closure in
B of {xe H: 11x112 < r}. By lemma 2, Cf is (strongly) compact in B. Let T be a tame
set of B disjoint from C. and suppose that T is based on the finite dimensional
subspace K of B*. The set K is also a subspace of H*. Let L be the finite dimen-
sional subspace of H which corresponds to K under the usual isomorphism be-
tween H and H* induced by the inner product on H. Then L is naturally iso-
morphic to K*, and in fact, the isomorphism is an orthogonal transformation
between these Euclidean spaces and is given by the restriction to L of the
map 7rK defined in the preceding section.

In particular, Gauss measure in L is carried by TrKIL into Gauss measure
in K*. Thus, if T = 7rK'(E') where E' is a Borel set in K* and if E is
the unique Borel set in L with 7rK(E) = E', then we have T n L = E. Hence,
Iu(T) = v(E) = v(T n L) where v is Gauss measure in L. But T n L is dis-
joint from Cnf L. Therefore, v(T n L) < 1 - (Cf n L). Furthermore, C. n
L D {x E L: 11x112 < r}. Denoting by P the projection of H onto L we have
v(Cfn L) > Prob (IIPxll. < r). Hence, ,4(T) = v(T n L) < Prob (IlPxll2 > r) <
Prob (lIxll2 > r) by theorem 5 of [4]. Thus u4(T) < e. This concludes the proof
of the theorem.
COROLLARY 1. In the notation of theorem 1 let m denote the countably additive

extension of, to the Borel field 8 of B. The identity map on B* regarded as a densely
defined map of H* into random variables over the probability space (B, 8, m) extends
to a representative of the normal distribution over H in a unique manner.
PROOF. If y is in B*, then by the definition of /4 and m, y is a normally dis-

tributed random variable over (B, 8, m) with mean zero and variance 11y112
where the norm of y used is the H* norm. Thus the linear map Fo: B* C H* -*
L2(B, 8, m) is continuous on a dense set in H*. Its unique continuous extension
F to H* again assigns to each y in H* a random variable F(y) over (B, 8, m)
which is normally distributed with mean zero and variance Ily 112. This character-
izes F as a representative of the normal distribution. Since any representative
of the normal distribution on H over (B, 8, m) is continuous from H* to
L2(B, 8, m), the asserted uniqueness of the extension of the identity map on B*
follows.
REMARK 1. Corollary 1 may be regarded as an abstract extension of the

stochastic integral. For if H is specialized to C' as in example 2 of section 2,
then a function y in L2(0, 1) defines an element of H* = (C')* by means of
(y, x) = fo y(t)x'(t) dt. Although this expression defines a continuous linear
functional on C if and only if y is of bounded variation, nevertheless, it exists
as a stochastic integral for all y in L2(0, 1).
COROLLARY 2. Continuing the notation of corollary 1 let lIX112 be an arbitrary

measurable seminorm on H. Let C be the closure in B of the set {x e H: lIX112 < r}
where r is a positive real number. Then m(C) > Prob (Ilxl2 < r).
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PROOF. The set C is the closure of a convex set, hence is itself a closed convex
set in B. Since B is separable, the complement of C is a countable union of
closed balls B,, which may be obtained, for example, by taking a dense se-
quence x. in the complement of C and taking B. to be the ball centered at xn,
and with radius equal to half the distance from x. to C. Each ball B,, can be
separated from C by a continuous linear functional yn on B. It follows that C
is the intersection of a sequence rTn of tame sets (in fact half spaces), and
B- nln= Tn is a tame set disjoint from C. Thus, if a = P'rob (IlIxIli < r),
then, as shown in the proof of theorem 1, we have ni(B- nnfl1 Tn) < 1- a.
In view of the countable additivity of mn, we thus obtain m(B - C) < 1- a
upon letting N -- o, and consequently, m(C) > a.
REMARK 2. For any separable real Banach space B, there is a real Hilbert

space H and measurable norm 11- Il onH such that B is (isometrically isomorphic
to) the completion of H in this norm. For since B is separable, there exists an
increasing sequence of finite dimensional subspaces F. of B such that Fn is
n-dimensional and such that K = Un=1 Fn is dense in B. Let z1, Z2, * - be a basis
for K such that zi, *--, zn is a basis for F,. Let S be the open unit ball of B.
We construct by induction a sequence of positive real numbers a,, and a new
basis yn of the form yn = a,nZn, n = 1, 2, * such that Z= 1 ,Bjyj is in S whenever

= 3JX < 1. Choose a1 such that y, is in S. Having chosen a1, * , an-, such that
Z = (3X < 1 implies ,J' f3,jyj is in S, we observe that the map f: ((1, * **, (,)
Z_j11 (jyj + .z3,, is continuous from E,n into B and that f-'(S) contains the
closed disk D: {(Q1, . . , 3,) Z 'r1 n):_1 1, f3n = O} and therefore, also a neigh-
borhood of D. In particular, for some positive number anfJ-(S) contains the
closed set Z-1Z 132 + (On/an)2 < 1. Thus a,n has been satisfactorily chosen.
The space K is a pre-Hilbert space in the inner product for which y,, y2, * * - is an
orthonormal set. If llxil' denotes the norm on K associated with this inner prod-
uct and llxll1 denotes the given B norm, then clearly lixIll < llxil' for x in K. If
{j} is a sequence of real numbers such that Y_7 Xj3 < oo, then the sequence
of partial sums of _ (13jyj is Cauchy in 11- 11' norm, hence also in 11- 11 norm.
Thus the series converges in 11 - 11i norm to an element of B. Hence the comple-
tion of K may be identified with a subset H' of B; H' is a separable Hilbert
space. Let A be a one-to-one Hilbert-Schmidt operator on H'. Its range H is a
Hilbert space in the norm llxil = IIA-lxll', and moreover, H is dense in B. Since
llxlli < llxll' = IIAxil and since llxll' is a measurable norm on H, so is llxlll,
which concludes the proof of our assertion.

In the following we shall use the representative of the normal distribution
constructed in corollary 1. Thus for suitable functions g on H, g denotes a
random variable on the probability space (B, 8, m). Suppose that f is a tame
function on B. Then f has the form f(x) = p(y1(x), * * * , y,,(x)) where yj is in
B*, j = 1, * * *, n. Since the yj are also in H*, the restriction g of f to H is also
a tame function on II. Moreover, g = f since y; = yj by definition. This being
said it is natural to ask whether g = f for functions f other than tame functions
on B where g is again the restriction of f to H. We showed that this is the case
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for Wiener space ([4], p. 390) where the proof was facilitated by the existence
of a suitable sequence of finite dimensional projections converging strongly to
the identity operator on Wiener space. It is not known whether such a sequence
exists in a general Banach space such as we are dealing with here (see remark 2),
and the proof that g = ,f (as random v-ariables) muist he modified somewhlat.
COROLLARY 83. Let f be a conttinuouis real- or cotn plex-rlldued funiction. ont B.

Let g be the restriction offJ to H. T'henb g is l.c.n.0 il '3m andy = f albnost everyiwher-e
with respect to ni.

PROOF. Let lIX112 be a ml-easurable noriii suich that for all r > 0, Sr -
{x C H: liX112 < r, is precompact in B. Then f, and hence g, is uniiformly con-
tinuous on Sr for each r with respect to llxlll. Since (IIXII2/n)- goes to zero in
probability as n x-* , g is u.c.n.0 in 35m. Thus gmakes sense as a random vari-
able on (B, 8, m). Let Pk be a sequence of finite dimensional projections on
H converging strongly to the identity operator and such that PkH C B*, k =
1, 2, -.. when II and I* are identified in the usual way. In this case each
P'k extends to a continuous projection Qk of B into PkH, as mnay be seeni by
taking an orthoniormllal basis el, , e, of P'kH and noting that the map x
F_=i (x, ej)ej oni H is conitiniuouis in 11 - 11. NoW f o Qk is a tame function on B
whose restriction to H is exactly f - l'k wlhich is by definition g o I.k. Thus by
the discussion preceding the corollary, we have (g o Ilk)- = f o Qk-
We cannot assert that f ° Qk(x) --+f(x) for each x in B because the Qk cain-

not be arranged to converge strongly to the identity operator. It suffices how-
ever to show that f o Qk converges to f in probability. Choose n so large that
Prob (Ilxl7 > n) < E,,<3. lIet C be the closure in B of {x e II: lIX112 < n,}. Tlhell
C is compact in B, anid by corollary 2, in(C) > 1 - (e/I:). Since f is uniformnly
continuous on C, there is a nuimiiber 3 > 0 such that If(x) - f(y)l < e wAheICI X
and y are in C and llx - ylll < 6. By corollary 5.1 of [4], 11(1 - Ik)Xlli COI-
verges to zero in probability as kx* .Ileciee, for some integer ko, the relationr
k > ko implies Prob (11( - Pk)xlli' > 3) < E,<8. Let Dk be the closurc in B of
{x e H: 11(I - Pk)XIIl < 63}. It is easily seen that Dk = -{x e B: 11 ( - Qk)X IL<6. .
Again by corollary 2, mn(Dk) > 1 - (E 8s) for k > ko. Finally, let Ck, =
{x C B: QkX e (C). SillCe (Ck is closed anid conitainis {x e II: 11'6kX112 < n, anid
sinice Prob (11I1 LX| > n) < E/3, it follows that 1n1((Ck) > I - (E,1 8). Thus
If(X) - f(Qkx)I < Ie when x is in C n Ck n Dk. Hence, i({x e B: If(x) -
f(Qkx)I < e}) > 1-e for k > k0, which concludes the proof of the corollary.

COROLLARY 4. 7'he measure m assigns positivle measuire to open sets in B.
PROOF. If U is an open set in B, then there exists a nonniiegative somewherelc

positive bounded continiuous functioni f oni B with stupport. in U. Since II is
dense in B, the restriction g of f to H is somewlhere positive oiiH. 13y the pre-
ceding corollary, g = f a.e. By corollary 5.5 of [4], 0 is not the zero ranidomn
variable. Hence, f > 0 on a set of positive measutre anid tn(U) > 0.
The next corollary is significant for regularity theorems in potential theory

over H. However, technically it belongs here.
COROLLA.RY 5. Let A be a bounded operator fr-omtt B inlto B*. Denote by i an(ld j
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the injections of H into B and B* into H* respectively. If E = jAi, then the sym-
metric part of E (identifying H* uith H) is a trace class operator and the skew
symmetric part is of Hilbert-Schmidt type.

PROOF. Let C = (E + E*)/2 and D = (E - E*)/2. The injection i is a
compact operator since for some real number r, the unit ball of H is contained
in the ball of radius r of the measurable norm constructed in lemma 2, and the
latter set is precompact in B. Hence, E is a compact operator and so are C
and D. Thus there is an orthonormal basis of H, el, e2, - - such that Cen = X.en
for all n. Now the function f(x) = (Ax, x) is a continuous function on B. Hence,
by corollary 3, if g is its restriction to H and Pk iS the projection of H onto span
(el, * **, e,n), then (g o Pk)- converges in probability as k - oo. But for x in
H, g(x) = (Cx, x). Hence, g PPk(x) = E_=l I x' where x,, = (x, en). Thus if
(n = (x, en)-, then the in form a sequence of independent normally distributed
random variables with mean zero and variance one, and moreover, (9 o Pk) =

-n1 Xn. Thus F_1 X.,,t converges in probability, and therefore, with probabil-
ity one. Moreover, since the basis el, e2, * can be rearranged arbitrarily without
affecting the convergence of (g o Pk)-, it follows that ,n-l X,n also remains
convergent after any rearrangement. Hence from the three-series theorem, it
follows that T_Al JX. < °°. Thus C is trace class.
Now in view of the identification of H* with H, the operator A2 is meaningful

as a bounded operator from B to B*. Its restriction to H is (C + D)2 whose
symmetric part is C2 + D2. Hence, D2 is a trace class operator, and consequently,
D is of Hilbert-Schmidt type.
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