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1. Introduction

The theory of dynamical programs deals with undertaking decisions in time.
Usually we have a functional over a set of sequences (or functions), and the
task consists in finding a minimum of this functional. The components of the
sequences (or the value of the functions-when time is considered to be con-
tinuous) represent the decisions, which are to be carried out at the appropriate
point of time. As the solution-minimizing the functional-we get a sequence
of decisions, which tells us what to do at all future times.

This is a considerable simplification of problems we face in applications.
Usually in applications we are not interested in all sequences of decisions, but
indeed, we are interested in the particular one which we must carry out at the
present stage. However, the functional to be minimized is not completely known
to us. This means that many data are needed to define a functional. These
data will occur in time, finally allowing selection of one functional from a
family of many possible functionals. But when making the first decision, we
do not know which one will finally be selected.

In several cases, to compute the optimal first step decision, we do not need
all the data of the functional, but only a part of them; for instance, those which
will occur up to a specific point of time h in the future. Such a point is called the
horizon of the problem. This is the point up to which one has to know the
future in order to compute the optimal decision at the present stage.
The idea of horizon goes back to Modigliani, who in [6] and [7] defined it

in an intuitive manner. But the ideas of Modigliani were not worked out to
a precise form, and therefore, the term "horizon," which may be found in many
papers concerned with dynamical programs, is used with various meanings.

In this paper we present a rigorous definition of the notion of horizon. An
auxiliary notion is that of a dynamical parameter, which serves to express the
information concerning data of the functional occurring in time.
There are two groups of problems basic to the theory of horizon. One of

them deals with the properties of solutions computed with the help of a given
horizon ("horizonal solutions"); the other one is concerned with the existence
of the horizon in specific cases. Since this paper has an introductory character,
both groups of problems are represented here, but by weak theorems only.
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Stronger results may be obtained by additional assumptions on the families
of problems concerned.

Notations. Throughout this paper we shall use a standard notation, with a
few exceptions, which will be mentioned here.

Usually a lower case letter, like x or ¢, denotes infinite sequence:

(l) X -= (Xly X2, ..* ) = (¢1, t2, * * ')-
By xjk we denote the finite sequence (x1, x2, - * *, Xk) of kc first coordinates of x.
By klx we denote the infinite sequence (Xk+1, Xk+2, *. . ). If An is a function of
n variables, then An(xlk, xln - k) = An(Y1, ...

I*,xI, X, .rk). The same
notation applies to functional A over sequences x:

(2) A(zlk, x) = A(YI, * * k, XI, X2,

The symbol R+ denotes the set of nonnegative real numbers and + o. The
symbol x( ) denotes the characteristic function of the relation in parentheses.
For instance,

(3) (O < a) 1, ~~if0 <a,(), if 0 > a.

2. Simple dynamic programming problems

A simple dynamic programming problem (d.p.p.) is defined by two sequences:
X1, X2, * - - A1, A2, - - . The first one is a sequence of sets, the second one
is a sequence of functions A.: X1 X ... X X,, -n R+. By the "problem" we
mean the problem of finding a minimum of the function A: X -- R+, where
X = X1 X X2... and A(x) = {=i Ai(xii). A d.p.p. is denoted (Xn, An).
EXAMPLE 2.1. The problem lies in finding a minimum of the function C(x) =
=-cic-xi for x's satisfying xi 2 0 and 5I'=o xi > y'=I di. Here ci (cost coeffi-

cients), di (demands), and x0 (initial stock) are nonnegative numbers. One can
assume that El=1 ci-di < +oo. To convert this problem into a d.p.p. we will
set X. = R+ and

r ~~k k
Cn=Xn, if E xi > E di for k = 1, * ,n;

(4) An(Xlx * * * X.n) = > i=O i=l

{+a, in the opposite case.

EXAMPLE 2.2 (Modigliani, Hohn [7]). Let us consider the function

(5) C(x) = l[c(xi) + a ( , Xj- E di)],i=l j=O j=l

where c is a convex, monotone-increasing function, positive for xi > 0 (cost
function), xo (initial stock), a (storage cost) are nonnegative numbers, and
where 0 < ,B < 1 (discount factor) and dj 2 0 (demands). To transform the
problem of finding a minimum of C over the set of x's satisfying xi > 0 and
Elo xi 2 Ff2=1 di into a d.p.p., we set Xn = R+ and
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Fn-I C(Xn') + at (t Xj-_E di)

(6) A.(xi,*x,.)= k~I k6i E xi > E dj for k = 1, ***, n,
j=O j=l

+oo, in the opposite case.
EXAMPLE 2.3 (Bellman, Glicksberg, Gross [3]). We are given two positive

numbers c (cost coefficient) and a (cost of increasing rate of production). For
xo > O, (i = 1, 2, ** *) we define
(7) An(xn-1, Xn) = fa(xn-, xn), if xn > dn,

(7)An(Xn-, n) - +o if Xn < dn
where a(Xn-, Xn) = C*xn + a(Xn - Xn-i)X(Xn > Xn-1). The sequence of sets
Xn = R+ and the sequence of functions An define a d.p.p. which is called the
problem of production planning without storage.
EXAMPLE 2.4 (Wagner, Whitin [8]). Let us define for the nonnegative num-

bers xo, si, mi, di, (n-1 n-i1
snx(O < Xn) + mn X,

- di0= j=1

(8) An(xI, Xn~) k Ik{if L xj 2 E dj for k = 1, * ,n;
j=O j=l

+oo, in the opposite case.

The sequence of function An together with the sequence of sets Xn = R+ form
a d.p.p.
EXAMPLE 2.5 (Blackwell [4]). We are given two finite sets S (states) and

A (actions), and moreover, two real functions r: S X A R+ and p: S X A X
S -+ R+; the latter, p(s'; if a, s), is a probability distribution in s'.

For every n, let Xn be the set of functions xn S -* A. Given an so in S and
x = (xI, x2, )in X = X X X2 X **,we define

(9) po(s; if so, XIO) {1 if s
= so,

#oi F so,

(10) pn+l(S; if so, xIn + 1) = i p(s'; if x1(so), 8)- pn(S; if s', (lIx) n)
a'ES

where llx denotes (X2, X3, - *) (and therefore, (lix) n = (X2, * * Xn+l)).
We define

(11) An(xln) = 3n-1
_ r(s, Xn(S))pn_I(S; if so, xin- 1).

8ES

This gives us a simple d.p.p. composed of the sequences X =X2 = ... and
A1, A2, * - -.

3. Families of d.p.p. The dynamic parameter
If to every element r of a set P corresponds a simple d.p.p., (Xn, An(.; c))

n = 1. 2, *.. , then we have a family of d.p.p. over the set of parameters P.
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If the set P is a subset of a product Z = Z1 X Z2 X * * *, and for every r in P
and every n, A,(- ; t) do not depend on the entire sequence r but only upon
their first n coordinates DIn, then we will call the family (Xv, An(.; DIn)), r E P,
a family with a dynamic parameter.
EXAMPLE 3.1. In this example, fixing x0 and ci's, the sequence of di's is a

dynamic parameter. The function A., in fact, does depend on the first n of
the di's, and so we can write An(x1, * ,* X xn; di, * * * , dn) = An(xin; din). The
set of parameters P is in this case the whole product R+ X R+ X * , but for
various reasons, it may be restricted to its subset.
By fixing only x0 and assuming not only di's but also ci's as being variable,

we obtain a larger family with di's and ci's occurring as a dynamic parameter.
Strictly speaking, in order to conform to the definition, we have to accept as a
dynamic parameter the sequence of pairs

(12) r = ((cl, di), (c2, d2), * )-
By varying x0 we can change the considered d.p.p.'s. But xo is not a dynamic

parameter.
EXAMPLE 3.2. In this example a, ,B, x0 and di's are parameters. Only di's

may be considered as a dynamic parameter. If instead of the discount factor d
we adopt varying factors 3,S, then the sequence of f3i's may be also considered
as a dynamic parameter. This may have some meaning when studying discount
fluctuations on a market.
Note that the choice of the dynamic parameter depends on the problem we

plan to study.
EXAMPLE 3.3. Here, the numbers c, a, x0 and all di's are parameters, but

only di's form a dynamic parameter. Following the definition of An which we
accepted, these functions depend only on the two last coordinates of xin and
on the last coordinate of din. It neither affects the definition of d.p.p. nor that
of the dynamic parameter. Defining functions An as

(13) . . . -=a(xn-i, xn), if Xk > dk, for k = 1, * * n,
(+) , in the opposite case,

we obtain another d.p.p. These d.p.p.'s considered as a family with a dynamic
parameter d = (di, d2, * * *) no longer have the property mentioned earlier. All
functions J. depend essentially on xln and din. In spite of the identity A (x) =
Yn=1 An(xin) = A(x) = _n7=1 qn(xin) (for a fixed d), both d.p.p. (Xn, A.) anid
(Xn, T,n) must be considered as different d.p.p.'s, because generally An #) An.
EXAMPLE 3.4. All sequences si, mi, and di may be considered as a dynamic

parameter. The number x0 is not one.
EXAMPLE 3.5. The element so is the only varying factor in the An's. It

cannot be considered as a dynamic parameter.

4. Truncated and partially completed d.p.p.'s. The initial parameter
Let us define for a given d.p.p. (Xn, An),

(14) An(xln; 1) = An(xln) and An(xin; 0) = 0.
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The family (X, A,(. ; t)), t e To, where To is the set of all sequences t with
tl = t2 = * = tN = 1, tN+l = tN+2= *-- =O for some natural number N, is
called the family of truncated d.p.p.'s of (X., An).
For a d.p.p. (X, An), x in X = X1 X X2 X ... and natural number k, we

define the d.p.p. partially completed by xlk as the d.p.p. (X,,, T4) with
Xn = Xn+k and 14n(xIn) = An+k(Ylk, xln) for every x in Xk+1 X Xk+2 X * .
Let us consider a family of d.p.p.'s (X,, A,(-; In)), E P with the (only)

dynamic parameter P. For a given x in X = X1 X X2 X *--, f in P and a
natural number k, we define the family partially completed by xlk and Djk as
the family of all d.p.p.'s (X,, A,(. ; Dln)) with ¢ E P and Ik = Ik, partially
completed by xlk. This is again a family with a dynamic parameter t which runs
over the set P( Ik) of all (= t42, ) such that (i*, k, t1, 42y *...*) be-
longs to P.

Let us now assume that the family (X., A.(. ; dn, xo)), EE P, xo G Xo is
such that X1 = = X3 = ... and P( Ik) = P for every f in P and natural k.

In this case the partial completion of a subfamily (X, A.(.; PIn, xo)), r E P,
with a fixed xo, by XIjk and Ik, results in a family defined onto the same sets X.
and with the same dynamic parameter f in P. It may happen that this family
is one of the subfamilies of the whole family, only with another nondynamic
parameter xo. If this occurs for every XIjk, Ik and xo in XO, then the parameter xo
is called the initial parameter of the whole family.
EXAMPLES 4.1-4.4. In all these examples xo is an initial parameter. Let us

consider, for instance, example 1. If the initial stock xo demands a, *--,
and productions xl, Xk,x are given for the first k periods, then at the k + 1-
period the initial stock is xO = xo + E2=1 ai, and this is the only
influence of the past on the coming periods. In order to cover the case when
x-1, * * *, x,k is not feasible for d1, * * *, adk (for instance, xo < 0), we may assume
that xc takes nonnegative values and -1.
EXAMPLE 4.5. In this example so is not an initial parameter, even in the

case when 3 = 1. If we complete the program by (x-l, * * *, xk) = xlk, starting
with a given so in S, then the initial s in the partially completed program is
known to us only through the distribution pk(S; if so, xlk).

In order to have an initial parameter in our family of problems, we may
extend the set of parameters S to the set H of (unconditional) distribution
over S. Then for a given 7r in II we will have

(15) pn(s; if 7r, xln) = E2 pn(s; if so, xln)r(so).

Now for a given 7r and xlk, the parameter 7r of the partially completed problem
will be pk(-; if 7r, xIk) which is in II.
The parameter 7r may be considered as an initial parameter also in the case

when X < 1, provided that we agree to consider two d.p.p.'s which differ only
by a positive coefficient (that is, An = aAn, for all n, with a > 0) as equal.
(This remark also applies in example 2, where the discount factor 3 is introduced.)

Finally, let us note that the family considered in this example has no proper
dynamic parameter. In order to fit it to the definition we may always introduce
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a dynamic parameter P consisting of a constant sequence. Such a P fulfills the
requirement of the definition.

5. The horizon and horizonal solutions
From this point on we will assume that all d.p.p.'s with which we are con-

cerned attain a minimum at some point of the product of their sets.
Now let us fix a family (X,An(-; Dln)), r EP C Z = Z X Z2 X *. The

function connected with a r in P shall be denoted by A (x; t) = _,2=j An(xIn; PIn).
By v(v) we shall denote the value of the d.p.p. with the parameter t: v(r) =
minex A(x; t). A d.p.p. with v(v) < +oo is called convergent.
We define a relation between a natural number h and an element f in Z (but

not necessarily in P) in the following way: h is the horizon for f if there exists
an element xl in X1, such that for every t in P and such that flh = Ih, there
exists an x in X with A(x, t) = v(r) and xi = xl.
Roughly speaking, h is a horizon for f if there exists a "first step decision" x4,

which may be extended to the minimal solution of every d.p.p. of the family
concerned, provided the dynamic parameter r of that program agrees with r
in h first coordinates.

If h is a horizon for f, then the element xl, which the definition asserts to
exist, is called the horizonal element for t.
We should point out that the notion of horizon depends on the family of

d.p.p.'s under consideration. The correct way of expressing the defined relation
is the following: "h is the horizon for f in the family. . . ." The notion of a
horizonal element is strongly dependent on h. If h is a horizon for f, then every
h. > h is also a horizon for P. But an element xl which satisfies the definition
for h, does not necessarily satisfy it for h.
A sequence x* in X is called a horizonal solution for f, iff for every k, xk+l

is a horizontal element for (fk+l, fk+2, ) in the family of d.p.p.'s partially
completed by x*Ik and Ik.
A very important lemma on the horizonal solutions is the following.
LEMMA 5.1. If x* is a horizonal solution for f, then for every k there exists

an hk such that, for every t in P satisfying Ik + hk = fjk + hk, there exists an x
in Xuith A(x; r) = v(r) and xlk + 1 = x*lk + 1.
The proof of this lemma is by induction on k, and we will not give it here.
We should note that a f for which there exists a horizonal solution cannot

be completely arbitrary. In order to have the family partially completed by
x*lk and Ik, a (k) in P with (k)Ik = Ik is needed. In this case we say that f
is a limit of the sequence ¢(k), and we write (k) ¢. In order to have a horizonal
solution, f has to be a limit of parameters in P.
We say that a simple d.p.p. has a horizon if the constant sequence t=

(1, 1, *--) has a horizon in the family of truncated d.p.p.'s of the given d.p.p.
In the same way, we say that x* is a horizonal solution of a simple d.p.p. This
means that it is a horizonal solution for t = (1, 1, ***) in the family of truncated
d.p.p.'s.
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EXAMPLE 5.1. In this example, h is a horizon for ((cl, al), (C2, 32), ** ) in the
family with an initial parameter xo, iff Ch < ei and ck > el, for k = 2, * , h - 1.
Then if t1-ai < xo, x1 = 0 is the horizonal element and if =- > xo, then
xl= E2'=1 Th - xo is the horizonal element.

If, for example, lim inf ei = 0 (which is a reasonable assumption, as usually
the cost ci will be the real costs reduced by a discount factor), then the horizonal
solution exists.
EXAMPLE 5.2. This is the classical example for the horizonal solution. If we

allow the parameters d = (di, d2, - * *) to run through the set of all nonnegative
sequences, then there obviously is no horizon for any sequence. But if we restrict
d to a set P of uniformly bounded sequences (that is, di < M, for all i and d
in P), then in that family with the arbitrary initial parameter there exists a
horizon for every sequence in P. Since the whole family is a family with an
initial parameter, then for every f in P a horizonal solution for v exists. Some
generalizations of this theorem have recently been proved (see section 6).
EXAMPLE 5.3. It may be easily shown that for a given d = (di, d2, * *.), h is

a horizon for d in the family with an initial parameter xo, if dh > xo and dk < XO
for k = 1, * * *, h - 1. A better result states that independently of xo the natural
number h' with (a/c) < h' < (a/c) + 1 is a horizon for every d. The first hori-
zon h, as a function of xo and d, is neither defined everywhere, nor bounded on the
set where it is defined. The second one is defined everywhere and bounded, but
it may happen that h < h'. Hence, the horizon h' is not always the shortest one.

Following the method presented in Arrow, Karlin [2], it may be shown that
there exists a horizon even in the continuous case with a convex cost function
(see section 6).
EXAMPLE 5.4. There is no horizon for all sequences of the dynamic param-

eters. (This fact was established by A. Brauner.) It is proved by showing that
if mi = 2, di = 1, and si = 3 + as, where 0 < ai < ai+l < 1, then the minimal
solution of the d.p.p. truncated on N is either (2, 0, 2, 0, * , 2, 0) if N is even,
or (1,2,0,2,0, -. ,2,0) ifNis odd.

It can be shown that a d.p.p. with all dynamic parameters constant, namely
si = si > 0, mi = ml > 0, di = di > 0, has a horizon in the family of its
truncated programs.
EXAMPLE 5.5. Not every d.p.p. with ,3 < 1, belonging to the family presented

in section 1, has a horizon in the family of its truncated d.p.p.'s. The example
is the following. The set S contains four states: so, si, 82, 83. All actions a in A
lead from one state to another in a deterministic manner (that is, p(s'; if a, s) = 1
or 0). We are given actions leading from so, s8, 82 to every other state, but S3
is an absorbing state. This means that every action leads from 83 to S3 only.
For transitions so -- sl, So -* 82, Si -> 82, 82 -- S, the loss r is equal to 1. For
transition 82 S_ 83 there is no loss, that is, r is equal to 0. All other transitions
have the loss r > 1; in particular, the transition S3 -S 3 has a loss which is
large in comparison to f, let us say 2/,.

If we start with so and the program is infinite, then the best we can do is to
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go to either si or 82, and then to change at every step from 81 to 82 and from
82 to sl. Proceeding this way we incur a minimal loss equal to v = -J-1 j3
If the program is finite, let us say of the length N, then the best policy, when
starting with so, is to go in N - 1 first steps through transitions with loss 1
and then to finish with the transition S2 -) S3. The total loss in such a case will
be VN = E -i' j3-l, and it is the minimal one. But to achieve this we must
make in the first step the transition SO -> S2, if N is even, and the transition
so s- , if N is odd. This shows that there is no horizon for the infinite problem
in the family of its truncated d.p.p.'s.

In spite of the nonexistence of the horizon for some d.p.p.'s in our family,
we can show that in some cases the horizon does exist.
We want to recall that

(16) An(xjn; So) = jp-i E r(s, xn(s))pn_i(S; if so, xln- 1).
BES

Let us form the family of truncated d.p.p.'s. By t(N) we shall denote the sequence
with tn') = 1 or 0, according to n < N or n > N. Then the functions of truncated
problems are
(17) An(xln; t(N', so) = tn.)-An(xln; so)
and

N
(18) A(x;t(N)),so) = E An(xjn;so).

n=1

It follows from the inductive definition of the conditional distribution pn
that

(i) A(x; t(N), SO) = r(so, x1(so)) + ,B E p(s; if x1(so), so)-A(lIx, t(N-1), s).
SES

Starting with this formula it can easily be proved by induction that
(ii) For every N, there exists an x(N) such that A (x(N); t(N), So) = v(t(ff), SO),

for every so in S.
Another easy preparatory lemma is the following.
(iii) For every so in S, v(t(ff), So) -+ v(so), when N -a ).
We associate with each function f: S -- A (then f is in XI) and every func-

tion 4: S -> R+, a function L(f, 0): S -÷ R+, which is defined by
(19) L(f, 4) (so) = r(so, f(so)) + F3_ p(s; if f(so), so)+(s)).
Then we have

(iv) A(x; t(N), So) = L(x1, A(ljx; t(N-1), *))(So).
Let us call an xl in XI a minimal element with respect to the function

4: S -* R+, iff L(f, O))(so) > L(xl, O))(so) for allf in Xi and so in S.
(v) For an xl in Xi, to have an extension x(N) (that is, xiN) = xl) with

A (x(N); t(N), So) = v(t(N), SO) for all so in S, it is necessary and sufficient to be a
minimal element with respect to v(t(ff-l), .).

It is easy to show that if xl fulfills the condition, then for every x(N-1) which
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minimizes the problem of the length N - 1, (xl, x(Nl), X(X1), * *) minimize
the problem of the length of N.
On the other hand, if x(N) minimizes the problem of the lenigth of N and

xT= xIN, then, as A (1 Ix(N), t(N1), s) . v(t(N1), s) for every s and L is monotonic,
we have

(20) L(xl, A(llx(N), t(N-1), *))(s,) = A(x(N), t(N), s,)
> L(x*, V(t(N-1), ))(So) = V(t(N), so) for every so-

It follows that L(xl, V(t(N-1), ))(So) < L(f, V(t(N-1), *))(So) for every so and f,
which means that xl is a minimal element with respect to v(t(N-1), *
Now let us remark that since L(f, 4) is continuous in 4, then
(vi) if f is not minimal with respect to 4), then there exists a neighborhood U

of 4 such that f is not minimal with respect to every t in U.
It follows from (vi) that,
(vii) there exists a neighborhood U of v(.) such that if xl is minimal with

respect to a given 4t in U, then xl is minimal with respect to v(.).
Now we can prove the following theorem.
THEOREM 5.1. If the minimal element x1 with respect to v(.) is unique, then

there exists a horizon h for the infinite problem, and the horizonal element is x1.
Let U be the neighborhood as described in (vii) and h a number such that,

if N > h, then v(t(N), *) belongs to U. It follows from the construction that the
minimal element xl with respect to v(.) is minimal with respect to v(t(N), *),
and it follows from (v) that it can be extended to an x(N) with A (X(N), t(N), so) =
v(t(N), sO) for all so in S. This proves the theorem.

6. Optimal properties of horizonal solutions

One of the most important problems of the theory of the horizon is to establish
when a horizonal solution is a minimal one. It is not always minimal, but the
theorem presented in this section will cover some important cases when it is so.
As in the preceding section, we will fix a family (Xn, A,,(-; Pjn)), r E P C

Z = Z1 X Z2 X ... and will use the notation A(x; ) = n= A,n(xln; tIn),
v(r) = min.ex A(x; P) and .(n) -*
THEOREM 6.1. If g;(n) e , p(n) V,v( (n)) < M and x* is a horizonal solution

for f, then A(x*; f) < M.
PROOF. Since W -* f and x* is a horizonal solution for f, then, by the

lemma in section 5, for every k we may find a number n and xn) such that
P(n) k = f1k, A(x(n), .(n)) = V(;(n)) and x(-)lk = x*Ik. Hence,

k k
(21) L Ai(x*li; IIi) = E Ai(x(n)li; P(n)Li)

< A(x(n); .(n)) = v(r(f)) < M,
which proves the theorem.
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THEOREM 6.2. If t(n) e p, t(n) -* , V(()) < v(r) and x* is a horizonal solu-
tion for f, then A(x*; f) = v(r).

PROOF. By applying theorem 6.1 with M = v(t), we obtain A(x*; f) < v(r).
THEOREM 6.3. If cE P and x* is a horizonal solution for , then A (x*; f) =

v(r).
PROOF. Since n= *) , then this is the corollary of theorem 6.2.
Following theorem 6.3, a horizonal solution for a d.p.p. in the family with

respect to which the horizonal solution has been constructed is a minimal one.
This theorem was proved by Maria W. Log in 1962.
THEOREM 6.4. If x* is a horizonal solution of a simple(d.p.p. (that is, in the

family of its truncated problems), then it is a minimal solution.
PROOF. If t(N) is the sequence with tn") = 1 for n < N and t(N) = 0 for

n > N, then t(N) -+ t = (1, 1, *). Obviously, V(t(N)) < v(t) = v. Therefore, this
theorem follows from theorem 6.2.
EXAMPLE 5.1. Let us suppose we are given a family of d.p.p.'s with the

parameter so in S as described in section 2 and later studied in section 5. More-
over, let us assume that there is a horizon in this family. In order to have an
initial parameter, we extend S to the set II of all distributions over S, and we
consider the functions An with average distributions pn(s; if 7r, xln), as shown in
section 4.

It is easy to check that extending S to II does not affect the existence of the
horizon, and moreover, that both the horizon and the horizonal element may
be chosen independently of the parameter 7r.

Since the family being considered has a horizon and an initial parameter,
then there exists a horizonal solution for every simple d.p.p. in this family. As
the horizonal element does not depend on wr and, going step by step, the same
horizonal element may be used, then the horizonal solution will be a sequence x
with xi = X2 = = - -.. Such a solution is called a stationary solution.

It follows from theorem 4 that this horizonal stationary solution is a minimal
one.

In the paper by Blackwell [4] it is shown that every family of d.p.p.'s as
studied here has a stationary minimal solution. It may be shown by easy
examples that not every stationary minimal solution is a horizonal one, even
in the case when a horizonal solution does exist.

7. Horizon for d.p.p.'s with continuous time

By studying dynamical programming problems with continuous time, the
theory of the horizon changes in several respects. Without going into detail we
shall show by two examples how in these cases the notion may be applied. Both
examples are indeed continuous versions of formerly presented examples.
We are given a nonnegative function c, defined for x > 0 and such that

c'(x) > 0, c"(x) 2 0. Furthermore, we are given two nonnegative constants a
and x0. The problem lies in minimizing the functional (see Arrow, Karlin [1])
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(22) 3T (x, P) = T0 z(x(t)) + a [XO + |0 (x(r) - (r)) dr] dt

over the set of all nonnegative functions x, continuous and differentiable for
all but a finite number of points, and such that

(23) y(x, P} t) = xo + ft (x(r) - ¢(T)) dT . 0 for O < t< T.

We shall assume that the function i-which is indeed the dynamical param-
eter of the problem-belongs to a set Zo of nonnegative, continuous, and dif-
ferentiable functions. This set will be more exactly specified later.
We say that the function f has a horizon H for To > 0 in the above-defined

family with parameters in Zo, iff the following is true.
There exists a function T such that for every T > H and every v in ZO with

t(t) = D(t), for 0 < t < H, there exists a function x* with y(x*, ¢, t) > 0 for
0 < t < T, 30T(x*, t) = miny(,r,t)>O 3T(x, t) and x*(t) = x(t) for 0 < t < To.

This is certainly not true if we do not restrict Zo to be a uniformly bounded
set of functions. But if we do restrict Zo to be the set of functions with 0 < m <
x(t) < M < , then, as is shown by Blikle [5], the above statement is true for
H = To + (1/a)[c'(M) - c'(m)].
Now let c be a nondecreasing and nonnegative differentiable function, and

let t' be a decreasing positive continuous function. Finally, let a be a positive
constant. Let us suppose we are interested in minimizing the functional

(24) gT(x) = T0 [c(x(t)) + a*x'(t)X(O < x'(t))]+t(t) dt

over the set of continuous nonnegative functions x, differentiable in all but a
finite number of points t, and such that x(t) > t(t), for all t.
Here again i-the dynamical parameter-is a function which is assumed to

belong to a set Zo of continuous differentiable and nonnegative functions.
Independent of what the set Zo is assumed to be, it may be shown, following

methods given in Arrow, Karlin [2], that there exists a horizon for every r in
ZO. In particular we have the following theorem.
THEOREM 7.1. For a given f and To > 0, there exists a function T such that,

for every r in Z0 with (t) = ¢(t) for 0 < t < To + maxo<t<<Tr a/c'(f(t)), there
exists a function x* with x*(t) > ~(t), 0 < t < T, Wo (x*) = minx(t) >¢(t) ao"(x) and
x*(t) = x(t),for0 < t < To.

This theorem may be stated briefly, as follows.
In every family with parameters in ZO, H = To + maxo <t <To a/c'(f (t)) is a

horizon for an arbitrary function .
Neither of the theorems we have given in this section is stated in its strongest

form. In both cases the defined horizon is not the shortest one for a given
parameter D. For the sake of simplicity we have taken their weaker form, since
the aim in presenting them was only to give an example of horizons in dynamical
programming problems with continuous time.
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