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1. Introduction

Let {zn} r be a sequence of random variables with a known joint distribution.
We are allowed to observe the zn sequentially, stopping anywhere we please;
the decision to stop with zn must be a function of zi, * * *, zn only (and not of
Zn+l ) If we decide to stop with Zn, we are to receive a reward x. =
fn(zi, * , Zn) where fn is a known function for each n. Let t denote any rule
which tells us when to stop and for which E(x,) exists, and let v denote the
supremum of E(xt) over all such t. How can we find the value of v, and what
stopping rule will achieve v or come close to it?

2. Definition of the yn sequence

We proceed to give a more precise definition of v and associated concepts.
We assume given always

(a) a probability space (Q, a, P) with points w;
(b) a nondecreasing sequence {Yn} 1' of sub-Borel fields of i;
(c) a sequence {xn} ' of random variables x,, = xn(w) such that for each

n 2 1, xn is measurable (5n) and E(xn) < °°.
(In terms of the intuitive background of the first paragraph, aYn is the Borel
field M(z,, * * *, zn) generated by zi, - - *, Zn. Having served the purpose of defining
the 5n and Xn, the zn disappear in the general theory which follows.) Any random
variable (r.v.) t with values 1, 2, * - * (not including oo) such that the event
[t = n] (that is, the set of all w such that t(w) = n) belongs to an for each n > 1,
is called a stopping variable (s.v.); xt = xt(,)(w) is then a r.v. Let C denote the
class of all t for which E(xi-) < oo. We define the value of the stochastic sequence
{Xn, 75n} 1 to be
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(1) v = sup E(xt).
tec

Similarly, for each n > 1 we denote by Cn the class of all t in C such
that P[t > n] = 1, and set
(2) vn = sup E(xt).tEcR
Then

(3) C = C1 D C2 D*** and v = v1 2v2 * **;
since t = n E Cn, we have vn > E(xn) > -oo*
For any family (yt, t e T) of r.v.'s we define y = ess SUPteT Yt if (a) y is a

r.v. such that P[y 2 yt] = 1 for each t in T, and (b) if z is any r.v. such that
P[z 2 yt] = 1 for each t in T, then P[z > y] = 1. It is known that there always
exists a sequence {tk} 1 in T such that
(4) sup Ytk = ess sup yt.

k tE=T

We may therefore define for each n > 1 a r.v. -y, measurable (sin) by

(5) 'yn = ess sup E(xeIffn);
then 'Yn 2 Xn (equalities and inequalities are understood to hold up to sets of
P-measure 0) and E(Qyn-) < E(x;) < oc.

It might seem more natural to consider, instead of C., the larger class Cn of
all s.v.'s t such that P[t 2 n] = 1 and E(x,) exists, that is E(xi-) and E(x+)
not both infinite. However, this would yield the same vn and 'Yn. For if t e C1n,
define

(6) ft if E(x4,15n) 2 x,
tn otherwise.

Then setting A = [E(xtl;n) 2 x.], we have

(7) E(xt7) < E(xn-) + JA X-

But -0o < LA Xn <. fA Xt, SO LA X- < ooX Hence, E(xF ) < oo and t' E C,. Now
E(xg'Ifn) = max (x., E(xetln)) 2 E(xel,n), and hence E(xt') 2 E(xt). It follows
that Vn and 'Yn are unchanged if we replace C. by Cn in their definitions.

3. Some lemmas

LEMMA 1. For each n > 1 there exists a sequence {tk} T in Cn such that

(8) xn <E(xtkj5kn) t Yn as k- oo.

PROOF. Choose {tk} I in Cn with t1 = n such that -Yn = SUpk E(Xtkj5n). By
lemmas 2 and 3 below, we can assume that (8) holds.
LEMMA 2. For any t c Cn, define t' = first k > n such that E(xej3k) < Xk.

Then
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(a) t' < t, t' E C.,
(b) E(xt la.) 2 E(x,15;,),
(c) t' > i 2 n E(xt,15:j) > Xj.

PROOF. If t = j> n, then E(xtljT) = x;, so t' < j; hence, t' < t. Now

(9) E(X9T) = E |
X

n< f E-(xtj k) < 2 J E(YEI|rk)k=k] J[t'= kk=n [t'=k]

= E(x-) < -,
so that t' e C,. Hence (a) holds. For any A e 5Y with j 2 n,

(10) Xt' Xk 2 E(x,t15k) = Xt.
A[t',j] k=j A[t'=k] k=j A[t'=k] It'2i]

Putting j = n gives (b). For t' > j we obtain E(xt'1I;j) 2 E(x,lgj) > xj, which
gives (c).
Any t' E Cn satisfying (c) of lemma 2 will be called n-regular.
LEMMA 3. Let {ti} T c Cn be n-regular for some fixed n> 1, and define Ti =

max (t1, * , ti). Then ri e Cn is n-regular and

(11) max E(xtkln) < E(x,il5;Y) < E(x1,f50-).
1 <k<i

PROOF. That Ti e C. is clear. For j> n and A E 5j,

(12) X7n= , +XTl +
|

Xk)
A[-i2i] k=j A[,i=k>2ti+i A[,ik<ti+i]

(| x741 + Xtik=j \Ari=k>ti+il)[7i=k<ti+13

=f XT4,-
JAtT..j3

For j = n, this gives

(13) E(xzj+an) 2 E(Xzil5:n) 2 ... 2 E(x7,j5Fn) = E(xtlgn)
and hence, by symmetry,

(14) E(x,jj5n) 2 max E(xt,I15n).

To prove that Ti is n-regular, we observe by the above that

(15) ri 2 j =* E(x-rjj5fj) < E(x,;+,15fj).
Since t1 is n-regular,

(16) t1 < j * xi < E(xt,1Ifj) = E(x,,1Ij) < ... < E(x,il5Fj),
and by symmetry,

(17) Ti > j * xi <E(xxrjjfj).
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4. The fundamental theorem

THEOREM 1. The following relations hold:

(a) y. = max (x., E(n+11i5n)), (n > 1)

(b) E(y.) = Vn.
PROOF. (a). Given any t e Cn, let t' = max (t, n + 1) e Cn+l and set

A = [t = n], and IA = indicator function of A. Then

(18) E(xilffn) = IA'Xn + IQ-A-E(xt'I9.n)
= IA Xn + In-A E(E(xt'Ijn+j)I;F)
< IA-Xn + IDlA-E(Y/n+ljIn) < max (xn, E(Yn+115:n)).

To prove the reverse inequality, choose, by lemma 1, {tk} T EF C.+, such that

(19) X.+1 < E(xthk15n+l) T Yn+l as k -;

then by the monotone convergence theorem for conditional expectations,
(20) E(Yqn+llf!;) = E(lim E(xtklffn+l)1In) = lim E(xt,I15n) < 'Yn.

k-- ~~~~~~k--o
And since t = n is in C., xn = E(xnl5n) < -Yn. This completes the proof of (a).

(b). Since for each t in Cn, E(xtlI:n) < 'Yn, E(xt) < E(-yn), SO Vn <- E(Yn).
Now choose {tk} T in C,, according to lemma 1; then

(21) E(-y.) = lim E(xt) < Vn-
k-

LEMMA 4. If t e C, then

(22) t > n =* E(xtgfn) < -Yn and E(x 15:0;) > Yn .

PROOF. Set t' = max (t, n) E Cn. By definition of -Yn,

(23) t > n => E(x,15:n) = E(xt'15'n) < 'yn,
and hence
(24) t > n = E(x15:Tn) 2 E-(X4Yt) 2 -in.

5. The r.v. a

We define the r.v.

(25) a = first n > 1 such that xn = 'Y. (= 00 if no such n exists).
In general, P[c < oo] < 1, so that a is not always a s.v.
LEMMA 5. If t e C, then t' = min (t, a) e C and E(xt') > E(xt).
PROOF. From lemma 4 we have

(26) E(xt-) = f Xt + X=f>>=2 | xt + =n ft
J[t'=t]j n=1 [t>n=a3] [=t] n=1 >n=wl

=| xt xn =E(xt )
[t=] n=l t>n=a3
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so that t' E C. The same argument without the - and with reversed inequality
proves the inequality E(xt) < E(xt').
A s.v. t E C is optimal if v = E(xt). A s.v. t in C is regular if it is 1-regular;

that is, if for each n > 1, t > n => E(x,15n) > x-.
THEOREM 2. (a) If a e C and is regular, then it is optimal. (b) If v < oo and

an optimal s.v. exists, then a E C and is optimal and regular; moreover, a is the
minimal optimal s.v. and
(27) a> n => E(xeIffn) = E(QYIfn) = 'yn (n > 1).
PROOF. (a) If o- e C and is regular, then a > n = E(xe|fn) > Xn for each

n> 1. And for any t e C, a = n, t > n =E(xtlgn) < 'Yn = Xn by lemma 4.
Hence by lemma 1 of [1], a is optimal.

(b) Since v < °O, vn = E(-yn) < ° for each n > 1. Let s in C be any optimal
s.v., set A = [s = n < a], and suppose P(A) > 0. Then

(28) A Yn > fA Xn + e for some E > O.
Choose {tk}l in Cn by lemma 1; then fA Xt, T fA /Yn, so that we can find k so
large that LA Xti > fA Yn - E. Set

(29) , s off A
(tk on A;

then it is easy to see that s' is a s.v. in C. But

(30) E(x.') = fJI-A aX + fA Xt, > J- A X. + fA xn = E(x.),
a contradiction. Hence P(A) = 0, and thus P[a < s] = 1, so a is a s.v. By
lemma 5, a = min (s, a) is in C and a is optimal and minimal.
For any n > 1, let A = [E(x,Iffn) < Yn, a > n] E in. If P(A) > 0, then

LA Yn > LA X,, since E(Yn) < E(Qy) = v < m. By lemma 1, there exists t in Cn
such that LA Xt> LA x.. Define

(31) =t off A'

then it is easy to see that r is a s.v. in C and E(x1) > E(xe) = v, a contradiction.
Hence P(A) = 0, and by lemma 4,
(32) a > n => E(,y,I|n) = E(x.Iffn) = 7Yn > Xn,
so ar is regular and the last part of (b) holds.

6. Bounded stopping variables
The r.v.'s Yn and the constants vn are in general impossible to compute directly.

To this end we define for any N > 1 and 1 < n < N the expressions
(33) Cn' = all t E Cn such that P[t < N] = 1; v' = sup E(xt);
(34) N = ess sup E(x,|in) -

t EC,,
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Then
(35) - < E(xn) = v'n< v"1 < *ya < <
so that we can define
(36) Vn = lim Vn"f yn = lim 'yn

and we have
(37) -0o < E(xn) < Vn < Vn, Xn _< Yn <4 Y.
By the argument of theorem 1 applied to the finite sequence {xn} '1, we have

N

(38)
~~~~~IN = XN,

8yn -=max (x., E(,y+' 1Fn)), (n = 1, ... , N - 1),
and E( ny) = Vn, so that tyn and vN are computable by recursion. By the mono-
tone convergence theorem for expectations and conditional expectations,
E(,y) = vn, and
(39) 'yn = max (xn, E(-yn+ij5l)), (n > 1).
Hence {-yn}1' satisfies the same recursion relation as does {-yn}j -. (In [2], yn' = Ny
-in = #n.)
THEOREM 3. If the condition A-: E(supn xn;) < o holds, then

(40) 'Yn = yn and v = Vn, (n >1).
PROOF. For any t E Cn and A e gn,

(41) A[t<N3 Xt . JA Xmin(t,N) + JA[t>N] XN.

Since E(Xmin(t,N)I5n) < Yn in,

(42) JA[t<Nl t JA 'r" + JA[t>N] (Sup X,).
Letting N -- o,

(43) X t
. IA

y', E(xtjI5) < -y' 'Yn < 'Y4
sO Yn = in and vn = v'.
COROLLARY. If A- holds and {xn} T is Markovian, and gn = X1* Xn),

then 'y = E(Ynxln).
PROOF. The Markovian property of {xn}l implies (by downward induction

on n) nyN = E(n-n Xn) which entails yn = E(-yn4xn), and then -y,n = E(-Ynlxn). (The
assumption A- will be dropped in the corollary to theorem 9.)

7. Supermartingales
A sequence {yn} 1 of r.v.'s is a supermartingale (or lower semimartingale) if

for each n > 1, Yn is measurable (5n), E(yn) exists, - Co < E(yn) < o, and
E(yn+llffn) < yn. We shall denote by D the class of all supermartingales {yn} r
such that yn 2 xn for each n> 1. The sequences {-y,,} r and {y'} ' are in D.
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THEOREM 4. The sequence {y'} is the minimal element of D.
PROOF. For any {yn} T in D,

Yn 2 Xn = n

(44) Yn-1 2 E(Ynlgn-1) 2 E( n n-1f_),
Yn-I 2 max (xn-1, E( nIn|3,1i)) = *n-i, * * ys 2 et, *

so that

(45) ~~~~~~~~~Yi2 lim -yi' = 'Yt (i 2 1).
n-x

We shall define various types of "regularity" for elements of D, according
to the class of s.v.'s t for which E(yt) is assumed to exist and the relation
(46) t > n => E(ytjF,n) < Yn, (n > 1)
to hold. An element {yn,} ' of D is said to be

(a) regular if for every s.v. t, E(yj) exists and (46) holds;
(b) semiregular if for every s.v. t such that E(yt) exists, (46) holds;
(c) C-regular if for every s.v. t e C (for which E(yt) necessarily exists),

(46) holds.
Clearly, for elements of D, regular =* semiregular =X C-regular.
We shall use the notation A+: E(sup. xn+) < oo, A*: E(xt) exists for every

s.v. t. Clearly, A+ =X A* ¢ A-.
LEMMA 6. If A* holds, then for any E > 0 and n > 1, there exists s E C. such

that
(47) E(x,,15n) > -Yn-e on [Yn < 00]
PROOF. Choose {tk} T in Cn by lemma 1. On [Yn < °° ] define a = first k > 1

such that E(xt,ITV,) > yYn- e, and set

(48) s= fta on [Yn <0]
tn elsewhere.

Then E(x,) exists, and on [-Yn < 00], E(x,I,jn) > Yn- e. Hence,

(49) E(x.) 2
<

] (-yn- E) + .,h]xn > -

so that s e Cn.
LEMMA 7. (a) Condition A- implies E(y-) = E((yt)-) < 00 for every s.v. t,

and (b) condition A+ implies E((yt)+) < E(-yt+) < oo for every s.v. t.
PROOF. (a) Since by theorem 3 Xn <- -Yn' = -Yn, -Yt- = (Yt)- < sup Xn .
(b) Since

(50) lyn+ = ess sup E+(xtlIgn) < E(sup xi+ 1,n),
tEc.

then

(51) E((y')+) < E(7y+) = E f a+ < E f E(sup Xi+Iln)
n=1 [=n] n=l [tC,=n] j

= E(sup xi+).
6
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THEOREM 5. (a) If {yn} 1 e D and is C-regular, then Yn 2 -y for each n > 1;
(b) A* = {fYn} T is semiregular;
(c) A- or A+ =! {fyn} r is regular;
(d) {Yny} is C-regular.
PROOF. (a) If {yn} 1' e D and is C-regular, then

(52) 'Yn = ess sup E(xtjI5) < ess sup E(ytJIn) < yn.tEcR tEc,.

(b) Let r be any s.v. such that P[T > n] = 1 and E(,y,) exists. For arbitrary
e> 0, k > n, and m> 1, setting Am = [-y, < m], we have

(53) m >f Yn 2 L Yn+l 2 *f** 2 | .2 *

so that -Yk < 00 on Am. Hence, Yk < 00 on A = [n < o]. By lemma 6, we can
choose tk e Ck such that
(54) E(xtklO;k) > Yk fE on A.
Define

(55) t = ftk on A [r k],
rT off A.

Then E(xt) exists, and on A,

(56) E(x,Ijn) = E ( I[,=k].E(xt.jkk)jn) 2 E ( I[T,=(k -e)Yk Yn)
= E(y,153) -E;

and therefore on A, by the remark preceding lemma 1,

(57) Yn = ess sup E(xtI1Yn) 2 E(7YTI<r;n)-f
tECn

(recall that On = all s.v.'s t> n such that E(xt) exists). Hence,

(58) 'Yn 2 E(7yI,Jn) on Q.
Now let t be any s.v. such that E(-yt) exists. Set T = max (t, n). Then if

E(Qyt) = 0 E(,yt-) <00, and hence

(59) E(Qy;) =[t>n] 7t + <[t<n]
while if E(Qyt+) <00, then

(60) E(Qy7) = >n] + 0t,<n]
since

n n f(61) 00 > | et =E | Yk 2 E | Yn = Yln-
(><n] k=1 [t=k] k=1 Jt=k] Jt<n]

Hence E(-y,) exists. By the previous result, y. 2 E(Q7,Iy), and hence,
(62) t > n * an 2 E (Q,I5;n) = E(Qy,In).

(c) This statement follows from (b) and lemma 7.
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(d) For 0 < b < oo, let xn(b) = min (xn, b), and let -ny (< -y,) denote yn for
the sequence {xn(b)}l As b -+ oo, -xn < y'Y T -j, say, where -in < Yn, and
for any t in Cn, x,(b) -xt-, so that E(x,(b)JIff) T E(x,j0;n). Since -jen 2 -ny >
E(xt(b)l5fn), -j > E(xt;n), and hence 'in 2 -Yn, -n = -Yn. Now if t E C, then
by (c), t 2 n=* E(-yt1|a;) < yn <ny.Asb - oo, since -y > -x- and E(x-) <c,
t > n => E(-y, I n) < -Yn, sO {-y,} T is C-regular.
COROLLARY 1. (a) The sequence {Yn} 1 is the minimal C-regular element of D.
(b) Condition A* implies that {-y,n} r is the minimal semiregular element of D.
(c) Either A- or A+ implies that {yn} T is the minimal regular element of D.
We remark that under A-, E(sup. yny) < E(supn xn-) < 00. Hence, by a well-

known theorem, {Yny} 1 is regular, and similarly for {-yn,} 1'. By theorems 4 and
5(a), {yny} T = {fy} 1r, which gives an alternative proof of theorem 3.
COROLLARY 2. If ryb = ess SUptEc, E(min (xt, b) 15n), then

(63) -Yn = lim -n. (n > 1).

8. Almost optimal stopping variables

LEMMA 8. If v < oo, then for any e > 0, P[xn 2 Y - e, i.o.] = 1.
PROOF. Since oc > v = E(-yi) 2 E(y2) 2 *-- , we have P[Yn <cc] = 1 for

each n > 1. Choose any e > 0 and r > 0, and define for n > 1,

(64) B= [E(xtl5;n) > Yrn-

where {tj} T is chosen by lemma 1 for each n > 1 so that tn c Cn and P(Bn) >
1 - 1/r (convergence a.e. =X convergence in probability). Define
(65) B = [Xn< 'Yn-E for all n > m]
where m is any fixed positive integer. Then
(66) xn < '.-EIB for n > m,
so on Bn for any n > m,

(67) Y-n < E(xt415n) < E(Qytn1) - EP(BlI.)r
Yn- ep(Bjan) by theorem 5(d).

Hence on Bn, P(Bl5n) S l/r, and therefore P(BBn) S 1/r. It follows that
P(B) S P(BBn) + P(Q- Bn) S (1/r) + (1/r) = (2/r). Since r can be arbi-
trarily large, P(B) = 0, and therefore,
(68) P[xn >_ Yn- e for some n > m] = 1
and

(69) P[x. 2 -Yn - e, i.o.] = lim 1 = 1.

THEOREM 6. For any e > 0, define
(70) s = first n > 1 such that xn > '.-- (s = oo if no such n exists).
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Assume the following: (a) P[s < oo ] = 1,
(b) E(x.) exists,

(c) lim inf f E+(±y.+llgn) = 0.
n- Iia>n]

Then E(x,) 2 v - e.
PROOF. We can assume E(x8,) < oo. Since Zy < x. + e, E(yj) <co. Now

(71) v = E(,yi) = |E,, Y. + f8>13 E(Y215:1)

= f=1] Y. + I[8=2] Y. + f[8>2] E(Y315:2) =
= f[l< <n 'Y" + f[8>n] E(,y+115Yn) <fl.<s<n] Y. + f[8>n] (n+d3 )

Letting n - oo, v < E(78) < E(x.) + e.
COROLLARY. For any e 00, define s by (70). Then

(i) for e> 0, A+=> P[s < oo] = and E(x8) > v-e;
(ii) for e = 0, {A+, P[s < oo] = 1} .E(x8) = v.
PROOF. Condition A+ implies v < X, and by lemma 8, this implies that

P[s <c] = 1. Condition A+ also implies (b) and (c).
THEOREM 7. Let {an} ' be any sequence of r.v.'s such that an is (0Th) measurable

and E(an) exists for each n> 1, and such that

(a) an = max (x., E(an+i5Yn)),
(b) P[xn > an- e i.o.] = 1 for every e > 0,
(c) {E+(an+I Yn)}I is uniformly integrable,
(d) either E(sup an-) <co, or A+ holds.

n

Then for eachn > 1, an < Yn-
PROOF. For m > 1, A E 5Fm, and e > 0, define t = first n> m such that

xn an- e. Then P[m < t <co] = 1. If the first part of (d) holds, then
E(al-) < oo, and since X at - e, it follows that E(x-) < oo, and hence, by
theorem 5(d),
(72) fA atfA xt +e-fA 'Yt +e-fA 'Ym +e.

If A+ holds, then E(a+) < E(xt+) + e < oo, and the same result follows from
theorem 5(c). Now

(73) IAam =
JA __at + fAt)am

..
= fAE.t<.katfA JA[t=m] JA[t>m] -+ J[<,m

+ IA[t >+k] am+k±+ < fA[m<t<m+kl at + fA[t>m+kA E+ (am+k+1 5m+k).

Letting k -÷ oo, it follows from (c) that

(74) fA am fA at <fA Ym+,
so since e was arbitrarily small, fA am .< fA yi,z and therefore, am < ain
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COROLLARY. Assume that A- holds. If {fan} is any sequence such that an is
measurable (5n), E(an) exists for each n > 1, and (a), (b), and (c) hold, then

(75) an =Yn-
PROOF. By theorems 7, 3, and 4, since A- implies (d),

(76) rYn < Cin < Yn = Yn.

9. A theorem of Dynkin
We next prove a slight generalization of a theorem of Dynkin [3]. Let {zn} T

be a homogeneous discrete time Markov process with arbitrary state space Z.
For any nonnegative measurable function g(-) on Z, define the function Pg(.) by
(77) Pg(z) = E(g(z.+1)Iz. = z)
and set
(78) Qg = max (g, Pg), Q"+1 = Q(Qkg), (k > 0), Q; = g.
Then g < Qg< Q2g < ,so
(79) h = lim QNg

exists. Let 5n = B(zi, * * * , zn) and consider the sequence {x,} 1' with xn = g(zn).
THEOREM 8. For the process defined above, sup, E(g(z,)) = E(h(zi)).
PROOF. By theorem 3,

(80) = = lim K&,
where

TN= g(ZN),
N -I = max (g(ZNv1), E(g(zN)IzN.1)) = Qg(zN- 1),

TN 2 = max (9(ZN.2), E(Qg(zN 1)IZN-2)) = max (9(ZN-2), PQ9(ZN-2))
(81) = max (9(ZN-2), Pg(ZN-2), PQ9(ZN-2)) = Q2g(ZN 2),

yN = QN-g(zi) h(z1) as N - oo.

Hence 'y = h(zi) and v = E(y1) = E(h(zi)).

10. The triple limit theorem
LEMMA 9. Assume A+ holds, and define

xn(a) = max (xn,-a), (O < a < oo),
(82) yn = ess sup E(xg(a) Tn).

P[t .n]= 1
Then
(83) 'Y. = lim 'yn.

a e+
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PROOF. Since yn = max (x. (a), E( y+i I )) and -y. (a) I -yn, say, as a o,
where yny 2 yn, it follows from A+ that y*n = max (xn, E(-y*n+jjYn)). For any
e > Oand m > 1, define s = first n > m such thatxn > Y* -y E (= oo if no such
n exists). Then {Y* ln (s,n)} nm=m iS a martingale, since

(84) E(-y* iD (s,n+1)) = I[8>n]E(-y+n+11Yn) + I[8<.]E(yI*3jn)
= I[C>n]V*n + I[E=mlWYm*n + *-- + I[u=n]-7n = Y*mln(s,n).

Since E((Qy*m. (s,n))+) < E(supn nx+) < oo, and since E((-y*)-) < oo, we have by
a martingale convergence theorem,

(85) 'Y*Mtn (s,n) -- a finite limit as n oo,
and hence,
(86) y-*n a finite limit on [s = o] as noo- .

But on [s = cc], -n > xn + e for n > m, so

(87) lim sup xn <. lim sup-y*-e on [s = 0]
n n

Since yn' < E(supi,m xj(a)I F71) for n > m,
(88) lim sup -yn < lim sup ry, < sup xj(a),

n n j>m
and hence,
(89) lim sup Y*n < lim sup xn(a) = max (lim sup xn, -a),

n n n

and
(90) lim sup Yny < lim sup Xn,

n n

but -yn* xn. Hence,
(91) lim sup -yn = lim sup xn,

n n

contradicting (87) unless P[s = o°] 0. Hence,
(92) P[Xn > 'Y - e, i.o.] 1,

and by theorem 7, -y*n < Yn. Therefore, 7yn = -yn-
THEOREM 9. The random variables -Yn are equal to

(93) 'Yn = lim lim lim yan(a, b),
b-*- a-x- N-o

where

(94) 7. (a, b) = ess sup E(xt(a, b) I5:)
P[n<t<Ni=l

and
Fa if x < a,

(95) x(a, b) = 1,x if a < x < b,
Lb if x > b.

PROOF. This follows from lemma 9, theorem 3, and corollary 2 of theorem 5.
COROLLARY 1. The values vn are equal to
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(96) rim lim lim vn(a, b).
b--+ a--+- Nx

COROLLARY 2. If {Xn} r is Markovian and in = (B(X1, * , Xn), then
(97) yYn = E(QYxXn)-
If the Xn are independent, then
(98) E(Yn+115'.) = E(Qyn+) = Vn+l,
and the Vn satisfy the recursion relation
(99) Vn = E{max (Xn, Vn+l)}, (n > 1).
PROOF. By induction ny (a, b) = E( yn(a, b)lxn) from n = N down, as in the

proof of the corollary of theorem 3. Letting N, a, b become infinite yields (97).
Under independence,
(100) E(Qy,+115Fn) = E(E(,y+|xXn+l)lnFn) = E(Qyn+) = Vn+l.
And from 'Yn = max (xn, E(Yn+l I5)) = max (xn, vn+i), we obtain (99) on taking
expectations.

11. Remarks on the independent case

THEOREM 10. Let the {xn,l be independent with 5n = B(xi, . , Xn). Set
s = first n > 1 such that Xn > '-e for e > 0 (= Xo if no such n exists). Then

(101) v < X0 P[s < m] 1,
and if in addition E(x8) exists, then
(102) E(x.) > v - e.
PROOF. By lemma 8 and theorem 6, since by (87)

(103) J[a>n) E+(7n+'115n) = Vvn+i = Vt+IP[s > n] < v+P[s > n] -O 0.

We remark that when e = 0 the conditions v < , P[s <cX] = 1, E(x.) exists,
imply E(x8) = v.
THEOREM 11. Let the {xn} r be independent with Tn = B(xi, * * *, xn), and let

{a.} 1 be any sequence of r.v.'s such that an is measurable (5i) and E(an) exists,
n > 1. If

(a) an = max (xn, E(ann+119n)), (n > 1),
(b) P(xn 2 an- e i.o.) = 1 for every e > 0,
(c) E(aOn+11Fn) = cn = constant, with E(ai) = cl < oo,
(d) A+ holds, or lim inf E(xn) > -oo,

n

then

(104) D An e< aYnt (n 7 1).
PROOF. Define A fLd t as in theorem 7. Since
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(105) c= E{max (x.+±, c.+i)I1F5} 2 c.+i,
we have

(106) JfA fA[m<t<m+k] at + fA[t>m+k) am+k+1

JA[m<t<m+kI] t + fA[t>m+k) Cm+k

fA[m<t<m+kI] a' + ClP[t > m + k].

Hence under A+ (or A-),

(107) [am < lim inf < lim inf Xt + e
A 1k- A[m<t<m+k]

akt A[m<t<m+k]

< lim inf f m at + c = | oYt +Eef< -Ym+ e
k--- fA[m<t<m+k] fA fA

by theorem 5(c), so a.m < ym. If the second part of (d) holds, then since cn J C,
say, where c > liminfnE(xn) > -oo, and x > c, - c> c - , it follows that
E(x-) <0, so theorem 5(d) yields the same conclusion.
REMARKS. 1. Lemmas 2 and 3 are slight extensions of lemmas 1 and 2 of [2].
2. Theorem 1 has been proved independently by G. Haggstrom [4] when

Elxnl <0 and E(supn xn+) < 0o, as have theorem 4, corollary l(c) of theorem 5
under At, and the corollary of theorem 6. The latter was also proved by
J. L. Snell [5].

3. We are greatly indebted to Mr. D. Siegmund for improvements in the
statement and proof of many of our results. In particular, theorem 9 is largely
due to him.
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