ON VALUES ASSOCIATED WITH A STOCHASTIC SEQUENCE

Y. S. CHOW ${ }^{1}$
Purdue University
and
H. ROBBINS ${ }^{2}$
Columbia University

1. Introduction

Let $\left\{z_{n}\right\}_{1}^{\infty}$ be a sequence of random variables with a known joint distribution. We are allowed to observe the z_{n} sequentially, stopping anywhere we please; the decision to stop with z_{n} must be a function of z_{1}, \cdots, z_{n} only (and not of z_{n+1}, \cdots). If we decide to stop with z_{n}, we are to receive a reward $x_{n}=$ $f_{n}\left(z_{1}, \cdots, z_{n}\right)$ where f_{n} is a known function for each n. Let t denote any rule which tells us when to stop and for which $E\left(x_{t}\right)$ exists, and let v denote the supremum of $E\left(x_{t}\right)$ over all such t. How can we find the value of v, and what stopping rule will achieve v or come close to it?

2. Definition of the $\boldsymbol{\gamma}_{\boldsymbol{n}}$ sequence

We proceed to give a more precise definition of v and associated concepts. We assume given always
(a) a probability space $(\Omega, \mathfrak{F}, P)$ with points ω;
(b) a nondecreasing sequence $\left\{\mathfrak{F}_{n}\right\}_{1}^{\infty}$ of sub-Borel fields of \mathfrak{F};
(c) a sequence $\left\{x_{n}\right\}_{1}^{\infty}$ of random variables $x_{n}=x_{n}(\omega)$ such that for each $n \geq 1, x_{n}$ is measurable $\left(\mathscr{F}_{n}\right)$ and $E\left(x_{n}^{-}\right)<\infty$.
(In terms of the intuitive background of the first paragraph, \mathcal{F}_{n} is the Borel field $₫\left(z_{1}, \cdots, z_{n}\right)$ generated by z_{1}, \cdots, z_{n}. Having served the purpose of defining the \mathscr{F}_{n} and x_{n}, the z_{n} disappear in the general theory which follows.) Any random variable (r.v.) t with values $1,2, \cdots$ (not including ∞) such that the event $[t=n]$ (that is, the set of all ω such that $t(\omega)=n$) belongs to \mathscr{F}_{n} for each $n \geq 1$, is called a stopping variable (s.v.); $x_{t}=x_{t(\omega)}(\omega)$ is then a r.v. Let C denote the class of all t for which $E\left(x_{t}^{-}\right)<\infty$. We define the value of the stochastic sequence $\left\{x_{n}, \mathcal{F}_{n}\right\}_{1}^{\infty}$ to be

[^0]\[

$$
\begin{equation*}
v=\sup _{t \in C} E\left(x_{t}\right) \tag{1}
\end{equation*}
$$

\]

Similarly, for each $n \geq 1$ we denote by C_{n} the class of all t in C such that $P[t \geq n]=1$, and set

$$
\begin{equation*}
v_{n}=\sup _{t \in C_{n}} E\left(x_{t}\right) . \tag{2}
\end{equation*}
$$

Then

$$
\begin{equation*}
C=C_{1} \supset C_{2} \supset \cdots \quad \text { and } \quad v=v_{1} \geq v_{2} \geq \cdots ; \tag{3}
\end{equation*}
$$

since $t=n \in C_{n}$, we have $v_{n} \geq E\left(x_{n}\right)>-\infty$.
For any family $\left(y_{t}, t \in T\right)$ of r.v.'s we define $y=\operatorname{ess}^{\sup }{ }_{t \in T} y_{t}$ if (a) y is a r.v. such that $P\left[y \geq y_{t}\right]=1$ for each t in T, and (b) if z is any r.v. such that $P\left[z \geq y_{t}\right]=1$ for each t in T, then $P[z \geq y]=1$. It is known that there always exists a sequence $\left\{t_{k}\right\}_{1}^{\infty}$ in T such that

$$
\begin{equation*}
\sup _{k} y_{t_{k}}=\underset{t \in T}{\operatorname{ess} \sup } y_{t} \tag{4}
\end{equation*}
$$

We may therefore define for each $n \geq 1$ a r.v. γ_{n} measurable (\mathcal{F}_{n}) by

$$
\begin{equation*}
\gamma_{n}=\underset{t \in C_{n}}{\operatorname{ess} \sup _{n}} E\left(x_{t} \mid \mathfrak{F}_{n}\right) \tag{5}
\end{equation*}
$$

then $\gamma_{n} \geq x_{n}$ (equalities and inequalities are understood to hold up to sets of P-measure 0) and $E\left(\gamma_{n}^{-}\right) \leq E\left(x_{n}^{-}\right)<\infty$.

It might seem more natural to consider, instead of C_{n}, the larger class \tilde{C}_{n} of all s.v.'s t such that $P[t \geq n]=1$ and $E\left(x_{t}\right)$ exists, that is $E\left(x_{t}^{-}\right)$and $E\left(x_{t}^{+}\right)$ not both infinite. However, this would yield the same v_{n} and γ_{n}. For if $t \in \widetilde{C}_{n}$, define

$$
t^{\prime}=\left\{\begin{array}{l}
t \text { if } E\left(x_{t} \mid \mathcal{F}_{n}\right) \geq x_{n} \tag{6}\\
n \text { otherwise }
\end{array}\right.
$$

Then setting $A=\left[E\left(x_{t} \mid \mathfrak{F}_{n}\right) \geq x_{n}\right]$, we have

$$
\begin{equation*}
E\left(x_{i^{\prime}}^{-}\right) \leq E\left(x_{n}^{-}\right)+\int_{A} x_{t}^{-} \tag{7}
\end{equation*}
$$

But $-\infty<\int_{A} x_{n} \leq \int_{A} x_{t}$, so $\int_{A} x_{t}^{-}<\infty$. Hence, $E\left(x_{t^{\prime}}^{-}\right)<\infty$ and $t^{\prime} \in C_{n}$. Now $E\left(x_{t^{\prime}} \mid \mathcal{F}_{n}\right)=\max \left(x_{n}, E\left(x_{t} \mid \mathfrak{F}_{n}\right)\right) \geq E\left(x_{t} \mid \mathfrak{F}_{n}\right)$, and hence $E\left(x_{t^{\prime}}\right) \geq E\left(x_{t}\right)$. It follows that v_{n} and γ_{n} are unchanged if we replace C_{n} by \widetilde{C}_{n} in their definitions.

3. Some lemmas

Lemma 1. For each $n \geq 1$ there exists a sequence $\left\{t_{k}\right\}_{1}^{\infty}$ in C_{n} such that

$$
\begin{equation*}
x_{n} \leq E\left(x_{t_{k}} \mid F_{n}\right) \uparrow \gamma_{n} \quad \text { as } \quad k \rightarrow \infty \tag{8}
\end{equation*}
$$

Proof. Choose $\left\{t_{k}\right\}_{1}^{\infty}$ in C_{n} with $t_{1}=n$ such that $\gamma_{n}=\sup _{k} E\left(x_{t_{k}} \mid F_{n}\right)$. By lemmas 2 and 3 below, we can assume that (8) holds.

Lemma 2. For any $t \in C_{n}$, define $t^{\prime}=$ first $k \geq n$ such that $E\left(x_{t} \mid \mathfrak{F}_{k}\right) \leq x_{k}$. Then
(a) $t^{\prime} \leq t, t^{\prime} \in C_{n}$,
(b) $E\left(x_{t^{\prime}} \mid \mathfrak{F}_{n}\right) \geq E\left(x_{t} \mid \mathfrak{F}_{n}\right)$,
(c) $t^{\prime}>j \geq n \Rightarrow E\left(x_{t^{\prime}} \mathfrak{F}_{j}\right)>x_{j}$.

Proof. If $t=j \geq n$, then $E\left(x_{t} \mid \mathfrak{F}_{j}\right)=x_{j}$, so $t^{\prime} \leq j$; hence, $t^{\prime} \leq t$. Now

$$
\begin{align*}
E\left(x_{i^{\prime}}^{-}\right) & =\sum_{k=n}^{\infty} \int_{\left[t^{\prime}=k\right]} x_{k}^{-} \leq \sum_{k=n}^{\infty} \int_{\left[t^{\prime}=k\right]} E^{-}\left(x_{t} \mid \mathfrak{F}_{k}\right) \leq \sum_{k=n}^{\infty} \int_{\left[t^{\prime}=k\right]} E\left(x_{t}^{-} \mid \mathfrak{F}_{k}\right) \tag{9}\\
& =E\left(x_{t}^{-}\right)<\infty
\end{align*}
$$

so that $t^{\prime} \in C_{n}$. Hence (a) holds. For any $A \in \mathfrak{F}_{j}$ with $j \geq n$,

$$
\begin{equation*}
\int_{A\left[t^{\prime} \geq j\right]} x_{t^{\prime}}=\sum_{k=j}^{\infty} \int_{A\left[t^{\prime}=k\right]} x_{k} \geq \sum_{k=j}^{\infty} \int_{A\left[t^{\prime}=k\right]} E\left(x_{t} \mid \mathfrak{F}_{k}\right)=\int_{A\left[t^{\prime} \geq j\right]} x_{t} . \tag{10}
\end{equation*}
$$

Putting $j=n$ gives (b). For $t^{\prime}>j$ we obtain $E\left(x_{t^{\prime}} \mid \mathcal{F}_{j}\right) \geq E\left(x_{t} \mid \mathfrak{F}_{j}\right)>x_{j}$, which gives (c).

Any $t^{\prime} \in C_{n}$ satisfying (c) of lemma 2 will be called n-regular.
Lemma 3. Let $\left\{t_{i}\right\}_{1}^{\infty} \in C_{n}$ be n-regular for some fixed $n \geq 1$, and define $\tau_{i}=$ $\max \left(t_{1}, \cdots, t_{i}\right)$. Then $\tau_{i} \in C_{n}$ is n-regular and

$$
\begin{equation*}
\max _{1 \leq k \leq i} E\left(x_{t k} \mid F_{n}\right) \leq E\left(x_{\tau_{i} \mid} \mid \mathfrak{F}_{n}\right) \leq E\left(x_{\tau_{i+1} \mid} \mid \mathfrak{F}_{n}\right) \tag{11}
\end{equation*}
$$

Proof. That $\tau_{i} \in C_{n}$ is clear. For $j \geq n$ and $A \in \mathscr{F}_{j}$,

$$
\begin{align*}
\int_{A\left[\tau_{i} \geq j\right]} x_{r_{i}} & =\sum_{k=j}^{\infty}\left(\int_{A\left[\tau_{i}=k \geq t_{i+1}\right]} x_{\pi_{i+1}}+\int_{A\left[\tau_{i}=k<t_{i+1}\right]} x_{k}\right) \tag{12}\\
& \leq \sum_{k=j}^{\infty}\left(\int_{A\left[\tau_{i}=k \geq t_{i+1}\right]} x_{\tau_{i+1}}+\int_{A\left[\tau_{i}=k<t_{i+1}\right]} x_{t_{i+1}}\right) \\
& =\int_{A\left[r_{i} \geq j\right]} x_{\tau_{i+1} .}
\end{align*}
$$

For $j=n$, this gives

$$
\begin{equation*}
E\left(x_{\pi_{i+1}+} \mid \mathfrak{F}_{n}\right) \geq E\left(x_{\tau_{i} \mid} \mid \mathfrak{F}_{n}\right) \geq \cdots \geq E\left(x_{\pi \mid} \mid \mathfrak{F}_{n}\right)=E\left(x_{t i} \mid \mathfrak{F}_{n}\right) \tag{13}
\end{equation*}
$$

and hence, by symmetry,

$$
\begin{equation*}
E\left(x_{\tau_{i} \mid} \mid \mathcal{F}_{n}\right) \geq \max _{1 \leq k \leq i} E\left(x_{t k} \mid F_{n}\right) \tag{14}
\end{equation*}
$$

To prove that τ_{i} is n-regular, we observe by the above that

$$
\begin{equation*}
\tau_{i} \geq j \Rightarrow E\left(x_{\tau_{i}} \mid \mathfrak{F}_{j}\right) \leq E\left(x_{\tau_{i+1} \mid} \mid \mathfrak{F}_{j}\right) \tag{15}
\end{equation*}
$$

Since t_{1} is n-regular,

$$
\begin{equation*}
t_{1}<j \Rightarrow x_{j}<E\left(x_{t i} \mid \mathfrak{F}_{j}\right)=E\left(x_{\pi} \mid \mathfrak{F}_{j}\right) \leq \cdots \leq E\left(x_{\tau_{i} \mid} \mid F_{j}\right) \tag{16}
\end{equation*}
$$

and by symmetry,

$$
\begin{equation*}
\boldsymbol{\tau}_{i}>j \Rightarrow x_{j}<E\left(x_{\pi_{i}} \mid \mathfrak{F}_{j}\right) . \tag{17}
\end{equation*}
$$

4. The fundamental theorem

Theorem 1. The following relations hold:

$$
\begin{align*}
& \text { (a) } \gamma_{n}=\max \left(x_{n}, E\left(\gamma_{n+1} \mid \mathfrak{F}_{n}\right)\right), \\
& \text { (b) } E\left(\gamma_{n}\right)=v_{n}
\end{align*}
$$

Proof. (a). Given any $t \in C_{n}$, let $t^{\prime}=\max (t, n+1) \in C_{n+1}$ and set $A=[t=n]$, and $I_{A}=$ indicator function of A. Then

$$
\begin{align*}
E\left(x_{t} \mid \mathfrak{F}_{n}\right) & =I_{A} \cdot x_{n}+I_{\Omega-A} \cdot E\left(x_{t^{\prime}} \mid \mathfrak{F}_{n}\right) \tag{18}\\
& =I_{A} \cdot x_{n}+I_{\Omega-A} \cdot E\left(E\left(x_{t^{\prime}} \mid \mathfrak{F}_{n+1}\right) \mid \mathfrak{F}_{n}\right) \\
& \leq I_{A} \cdot x_{n}+I_{\Omega-A} \cdot E\left(\gamma_{n+1} \mid \mathfrak{F}_{n}\right) \leq \max \left(x_{n}, E\left(\gamma_{n+1} \mid F_{n}\right)\right)
\end{align*}
$$

To prove the reverse inequality, choose, by lemma $1,\left\{t_{k}\right\}_{1}^{\infty} \in C_{n+1}$ such that

$$
\begin{equation*}
x_{n+1} \leq E\left(x_{t_{k}} \mid \mathfrak{F}_{n+1}\right) \uparrow \gamma_{n+1} \quad \text { as } \quad k \rightarrow \infty ; \tag{19}
\end{equation*}
$$

then by the monotone convergence theorem for conditional expectations,

$$
\begin{equation*}
E\left(\gamma_{n+1} \mid \mathfrak{F}_{n}\right)=E\left(\lim _{k \rightarrow \infty} E\left(x_{t k} \mid \mathfrak{F}_{n+1}\right) \mid \mathfrak{F}_{n}\right)=\lim _{k \rightarrow \infty} E\left(x_{t k} \mid \mathfrak{F}_{n}\right) \leq \gamma_{n} . \tag{20}
\end{equation*}
$$

And since $t=n$ is in $C_{n}, x_{n}=E\left(x_{n} \mid \mathfrak{F}_{n}\right) \leq \gamma_{n}$. This completes the proof of (a).
(b). Since for each t in $C_{n}, E\left(x_{t} \mid \mathfrak{F}_{n}\right) \leq \gamma_{n}, E\left(x_{t}\right) \leq E\left(\gamma_{n}\right)$, so $v_{n} \leq E\left(\gamma_{n}\right)$. Now choose $\left\{t_{k}\right\}_{1}^{\infty}$ in C_{n}, according to lemma 1 ; then

$$
\begin{equation*}
E\left(\gamma_{n}\right)=\lim _{k \rightarrow \infty} E\left(x_{t_{k}}\right) \leq v_{n} \tag{21}
\end{equation*}
$$

Lemma 4. If $t \in C$, then

$$
\begin{equation*}
t \geq n \Rightarrow E\left(x_{t} \mid \mathfrak{F}_{n}\right) \leq \gamma_{n} \quad \text { and } \quad E\left(x_{t}^{-} \mid \mathfrak{F}_{n}\right) \geq \gamma_{n}^{-} \tag{22}
\end{equation*}
$$

Proof. Set $t^{\prime}=\max (t, n) \in C_{n}$. By definition of γ_{n},

$$
\begin{equation*}
t \geq n \Rightarrow E\left(x_{t} \mid \mathfrak{F}_{n}\right)=E\left(x_{t^{\prime}} \mid \mathfrak{F}_{n}\right) \leq \gamma_{n} \tag{23}
\end{equation*}
$$

and hence

$$
\begin{equation*}
t \geq n \Rightarrow E\left(x_{t}^{-} \mid \mathfrak{F}_{n}\right) \geq E^{-}\left(x_{t} \mid \mathfrak{F}_{n}\right) \geq \gamma_{n}^{-} \tag{24}
\end{equation*}
$$

5. The r.v. σ

We define the r.v.

$$
\begin{equation*}
\sigma=\text { first } n \geq 1 \text { such that } x_{n}=\gamma_{n} \quad(=\infty \text { if no such } n \text { exists }) . \tag{25}
\end{equation*}
$$

In general, $P[\sigma<\infty]<1$, so that σ is not always a s.v.
Lemma 5. If $t \in C$, then $t^{\prime}=\min (t, \sigma) \in C$ and $E\left(x_{t^{\prime}}\right) \geq E\left(x_{t}\right)$.
Proof. From lemma 4 we have

$$
\begin{align*}
E\left(x_{l^{-}}^{-}\right) & =\int_{\left[t^{\prime}=t\right]} x_{t^{\prime}}^{-}+\sum_{n=1}^{\infty} \int_{[t>n=\sigma]} x_{t}^{-} \geq \int_{\left[t^{\prime}=t\right]} x_{t^{\prime}}^{-}+\sum_{n=1}^{\infty} \int_{[t>n=\sigma]} \gamma_{n}^{-} \tag{26}\\
& =\int_{\left[t^{\prime}=t\right]} x_{t^{\prime}}^{-}+\sum_{n=1}^{\infty} \int_{[t>n=\sigma]} x_{n}^{-}=E\left(x_{t^{\prime}}^{-\bar{\prime}}\right)
\end{align*}
$$

so that $t^{\prime} \in C$. The same argument without the - and with reversed inequality proves the inequality $E\left(x_{t}\right) \leq E\left(x_{t^{\prime}}\right)$.

A s.v. $t \in C$ is optimal if $v=E\left(x_{t}\right)$. A s.v. t in C is regular if it is 1-regular; that is, if for each $n \geq 1, t>n \Rightarrow E\left(x_{t} \mid \mathfrak{F}_{n}\right)>x_{n}$.

Theorem 2. (a) If $\sigma \in C$ and is regular, then it is optimal. (b) If $v<\infty$ and an optimal s.v. exists, then $\sigma \in C$ and is optimal and regular; moreover, σ is the minimal optimal s.v. and

$$
\begin{equation*}
\sigma \geq n \Rightarrow E\left(x_{\sigma} \mid \mathfrak{F}_{n}\right)=E\left(\gamma_{\sigma} \mid \mathfrak{F}_{n}\right)=\gamma_{n} \quad(n \geq 1) \tag{27}
\end{equation*}
$$

Proof. (a) If $\sigma \in C$ and is regular, then $\sigma>n \Rightarrow E\left(x_{\sigma} \mid \mathfrak{F}_{n}\right)>x_{n}$ for each $n \geq 1$. And for any $t \in C, \sigma=n, t \geq n \Rightarrow E\left(x_{t} \mid \mathfrak{F}_{n}\right) \leq \gamma_{n}=x_{n}$ by lemma 4 . Hence by lemma 1 of [1], σ is optimal.
(b) Since $v<\infty, v_{n}=E\left(\gamma_{n}\right)<\infty$ for each $n \geq 1$. Let s in C be any optimal s.v., set $A=[s=n<\sigma]$, and suppose $P(A)>0$. Then

$$
\begin{equation*}
\int_{A} \gamma_{n}>\int_{A} x_{n}+\epsilon \quad \text { for some } \epsilon>0 \tag{28}
\end{equation*}
$$

Choose $\left\{t_{k}\right\}_{1}^{\infty}$ in C_{n} by lemma 1 ; then $\int_{A} x_{t_{k}} \uparrow \int_{A} \gamma_{n}$, so that we can find k so large that $\int_{A} x_{t_{k}}>\int_{A} \gamma_{n}-\epsilon$. Set

$$
s^{\prime}= \begin{cases}s & \text { off } A \tag{29}\\ t_{k} & \text { on } A\end{cases}
$$

then it is easy to see that s^{\prime} is a s.v. in C. But

$$
\begin{equation*}
E\left(x_{s^{\prime}}\right)=\int_{\Omega-A} x_{s}+\int_{A} x_{t_{k}}>\int_{\Omega-A} x_{s}+\int_{A} x_{n}=E\left(x_{s}\right), \tag{30}
\end{equation*}
$$

a contradiction. Hence $P(A)=0$, and thus $P[\sigma \leq s]=1$, so σ is a s.v. By lemma $5, \sigma=\min (s, \sigma)$ is in C and σ is optimal and minimal.

For any $n \geq 1$, let $A=\left[E\left(x_{\sigma} \mid \mathfrak{F}_{n}\right)<\gamma_{n}, \sigma>n\right] \in \mathfrak{F}_{n}$. If $P(A)>0$, then $\int_{A} \gamma_{n}>\int_{A} x_{\sigma}$, since $E\left(\gamma_{n}\right) \leq E\left(\gamma_{1}\right)=v<\infty$. By lemma 1, there exists t in C_{n} such that $\int_{A} x_{t}>\int_{A} x_{\sigma}$. Define

$$
\tau= \begin{cases}t & \text { on } A \tag{31}\\ \sigma & \text { off } A\end{cases}
$$

then it is easy to see that τ is a s.v. in C and $E\left(x_{\tau}\right)>E\left(x_{\sigma}\right)=v$, a contradiction. Hence $P(A)=0$, and by lemma 4,

$$
\begin{equation*}
\sigma>n \Rightarrow E\left(\gamma_{\sigma} \mid \mathfrak{F}_{n}\right)=E\left(x_{\sigma} \mid \mathfrak{F}_{n}\right)=\gamma_{n}>x_{n} \tag{32}
\end{equation*}
$$

so σ is regular and the last part of (b) holds.

6. Bounded stopping variables

The r.v.'s γ_{n} and the constants v_{n} are in general impossible to compute directly.
To this end we define for any $N \geq 1$ and $1 \leq n \leq N$ the expressions

$$
\begin{align*}
& C_{n}^{N}=\text { all } t \in C_{n} \text { such that } P[t \leq N]=1 ; v_{n}^{N}=\sup _{t \in C_{n}^{N}} E\left(x_{t}\right) ; \tag{33}\\
& \gamma_{n}^{N}=\underset{t \in C_{n}^{N}}{\operatorname{ess} \sup } E\left(x_{t} \mid \mathfrak{F}_{n}\right) \tag{34}
\end{align*}
$$

Then

$$
\begin{equation*}
-\infty<E\left(x_{n}\right)=v_{n}^{n} \leq v_{n}^{n+1} \leq \cdots \leq v_{n} \text { and } x_{n}=\gamma_{n}^{n} \leq \gamma_{n}^{n+1} \leq \cdots \leq \gamma_{n} \tag{35}
\end{equation*}
$$

so that we can define

$$
\begin{equation*}
v_{n}^{\prime}=\lim _{N \rightarrow \infty} v_{n}^{N}, \quad \gamma_{n}^{\prime}=\lim _{N \rightarrow \infty} \gamma_{n}^{N}, \tag{36}
\end{equation*}
$$

and we have

$$
\begin{equation*}
-\infty<E\left(x_{n}\right) \leq v_{n}^{\prime} \leq v_{n}, \quad x_{n} \leq \gamma_{n}^{\prime} \leq \gamma_{n} \tag{37}
\end{equation*}
$$

By the argument of theorem 1 applied to the finite sequence $\left\{x_{n}\right\}_{1}^{N}$, we have

$$
\begin{align*}
& \gamma_{N}^{N}=x_{N} \\
& \gamma_{n}^{N}=\max \left(x_{n}, E\left(\gamma_{n+1}^{N} \mid \mathfrak{F}_{n}\right)\right), \quad(n=1, \cdots, N-1), \tag{38}
\end{align*}
$$

and $E\left(\gamma_{n}^{N}\right)=v_{n}^{N}$, so that γ_{n}^{N} and v_{n}^{N} are computable by recursion. By the monotone convergence theorem for expectations and conditional expectations, $E\left(\gamma_{n}^{\prime}\right)=v_{n}^{\prime}$, and

$$
\begin{equation*}
\gamma_{n}^{\prime}=\max \left(x_{n}, E\left(\gamma_{n+1}^{\prime} \mid \mathfrak{F}_{n}\right)\right), \quad(n \geq 1) \tag{39}
\end{equation*}
$$

Hence $\left\{\gamma_{n}^{\prime}\right\}_{1}^{\infty}$ satisfies the same recursion relation as does $\left\{\gamma_{n}\right\}_{1}^{\infty}$. (In [2], $\gamma_{n}^{N}=\beta_{n}^{N}$, $\gamma_{n}^{\prime}=\beta_{n}$.)

Theorem 3. If the condition $A^{-}: E\left(\sup _{n} x_{n}^{-}\right)<\infty$ holds, then

$$
\begin{equation*}
\gamma_{n}^{\prime}=\gamma_{n} \quad \text { and } \quad v_{n}^{\prime}=v_{n} \tag{40}
\end{equation*}
$$

$$
(n \geq 1)
$$

Proof. For any $t \in C_{n}$ and $A \in \mathcal{F}_{n}$,

$$
\begin{equation*}
\int_{A[t \leq N]} x_{t} \leq \int_{A} x_{\min (t, N)}+\int_{A[t>N]} x_{\bar{N}} \tag{41}
\end{equation*}
$$

Since $E\left(x_{\min (t, N)} \mid \mathfrak{F}_{n}\right) \leq \gamma_{n}^{N} \leq \gamma_{n}^{\prime}$,

$$
\begin{equation*}
\int_{A[t \leq N]} x_{t} \leq \int_{A} \gamma_{n}^{\prime}+\int_{A[t>N]}\left(\sup _{m} x_{m}^{-}\right) \tag{42}
\end{equation*}
$$

Letting $N \rightarrow \infty$,

$$
\begin{equation*}
\int_{A} x_{t} \leq \int_{A} \gamma_{n}^{\prime}, \quad E\left(x_{t} \mid \mathfrak{F}_{n}\right) \leq \gamma_{n}^{\prime}, \quad \gamma_{n} \leq \gamma_{n}^{\prime} \tag{43}
\end{equation*}
$$

so $\gamma_{n}=\gamma_{n}^{\prime}$ and $v_{n}=v_{n}^{\prime}$.
Corollary. If A^{-}holds and $\left\{x_{n}\right\}_{1}^{\infty}$ is Markovian, and $\mathfrak{F}_{n}=\circledast\left(x_{1}, \cdots, x_{n}\right)$, then $\gamma_{n}=E\left(\gamma_{n} \mid x_{n}\right)$.

Proof. The Markovian property of $\left\{x_{n}\right\}_{1}^{\infty}$ implies (by downward induction on n) $\gamma_{n}^{N}=E\left(\gamma_{n}^{N} \mid x_{n}\right)$ which entails $\gamma_{n}^{\prime}=E\left(\gamma_{n}^{\prime} \mid x_{n}\right)$, and then $\gamma_{n}=E\left(\gamma_{n} \mid x_{n}\right)$. (The assumption A^{-}will be dropped in the corollary to theorem 9.)

7. Supermartingales

A sequence $\left\{y_{n}\right\}_{1}^{\infty}$ of r.v.'s is a supermartingale (or lower semimartingale) if for each $n \geq 1, y_{n}$ is measurable (\mathcal{F}_{n}), $E\left(y_{n}\right)$ exists, $-\infty \leq E\left(y_{n}\right) \leq \infty$, and $E\left(y_{n+1} \mid \mathfrak{F}_{n}\right) \leq y_{n}$. We shall denote by D the class of all supermartingales $\left\{y_{n}\right\}_{1}^{\infty}$ such that $y_{n} \geq x_{n}$ for each $n \geq 1$. The sequences $\left\{\gamma_{n}\right\}_{1}^{\infty}$ and $\left\{\gamma_{n}^{\prime}\right\}_{1}^{\infty}$ are in D.

Theorem 4. The sequence $\left\{\gamma_{n}^{\prime}\right\}$ is the minimal element of D.
Proof. For any $\left\{y_{n}\right\}_{1}^{\infty}$ in D,

$$
\begin{align*}
y_{n} & \geq x_{n}=\gamma_{n}^{n}, \\
y_{n-1} & \geq E\left(y_{n} \mid \mathfrak{F}_{n-1}\right) \geq E\left(\gamma_{n}^{n} \mid \mathfrak{F}_{n-1}\right), \tag{44}\\
y_{n-1} & \geq \max \left(x_{n-1}, E\left(\gamma_{n}^{n} \mid \mathfrak{F}_{n-1}\right)\right)=\gamma_{n-1}^{n}, \cdots, y_{i} \geq \gamma_{i}^{n}, \cdots
\end{align*}
$$

so that

$$
\begin{equation*}
y_{i} \geq \lim _{n \rightarrow \infty} \gamma_{i}^{n}=\gamma_{i}^{\prime} \tag{45}
\end{equation*}
$$

We shall define various types of "regularity" for elements of D, according to the class of s.v.'s t for which $E\left(y_{t}\right)$ is assumed to exist and the relation

$$
\begin{equation*}
t \geq n \Rightarrow E\left(y_{t} \mid \mathfrak{F}_{n}\right) \leq y_{n} \tag{46}
\end{equation*}
$$

to hold. An element $\left\{y_{n}\right\}_{1}^{\infty}$ of D is said to be
(a) regular if for every s.v. $t, E\left(y_{t}\right)$ exists and (46) holds;
(b) semiregular if for every s.v. t such that $E\left(y_{t}\right)$ exists, (46) holds;
(c) C-regular if for every s.v. $t \in C$ (for which $E\left(y_{t}\right)$ necessarily exists), (46) holds.

Clearly, for elements of D, regular \Rightarrow semiregular $\Rightarrow C$-regular.
We shall use the notation $A^{+}: E\left(\sup _{n} x_{n}^{+}\right)<\infty, A^{*}: E\left(x_{t}\right)$ exists for every s.v. t. Clearly, $A^{+} \Rightarrow A^{*} \Leftarrow A^{-}$.

Lemma 6. If A^{*} holds, then for any $\epsilon>0$ and $n \geq 1$, there exists $s \in C_{n}$ such that

$$
\begin{equation*}
E\left(x_{s} \mid \mathfrak{F}_{n}\right)>\gamma_{n}-\epsilon \quad \text { on }\left[\gamma_{n}<\infty\right] . \tag{47}
\end{equation*}
$$

Proof. Choose $\left\{t_{k}\right\}_{1}^{\infty}$ in C_{n} by lemma 1. On $\left[\gamma_{n}<\infty\right]$ define $\alpha=$ first $k \geq 1$ such that $E\left(x_{t_{k}} \mid F_{n}\right)>\gamma_{n}-\epsilon$, and set

$$
s=\left\{\begin{array}{l}
t_{\alpha} \text { on }\left[\gamma_{n}<\infty\right] \tag{48}\\
n \text { elsewhere } .
\end{array}\right.
$$

Then $E\left(x_{s}\right)$ exists, and on $\left[\gamma_{n}<\infty\right], E\left(x_{s} \mid \mathfrak{F}_{n}\right)>\gamma_{n}-\epsilon$. Hence,

$$
\begin{equation*}
E\left(x_{s}\right) \geq \int_{\left[\gamma_{n}<\infty\right]}\left(\gamma_{n}-\epsilon\right)+\int_{\left[\gamma_{n}=\infty\right]} x_{n}>-\infty \tag{49}
\end{equation*}
$$

so that $s \in C_{n}$.
Lemma 7. (a) Condition A^{-}implies $E\left(\gamma_{t}^{-}\right)=E\left(\left(\gamma_{t}^{\prime}\right)^{-}\right)<\infty$ for every s.v. t, and (b) condition A^{+}implies $E\left(\left(\gamma_{t}^{\prime}\right)^{+}\right) \leq E\left(\gamma_{t}^{+}\right)<\infty$ for every s.v. t.

Proof. (a) Since by theorem $3 x_{n} \leq \gamma_{n}^{\prime}=\gamma_{n}, \gamma_{t}^{-}=\left(\gamma_{t}^{\prime}\right)^{-} \leq \sup x_{n}^{-}$.
(b) Since

$$
\begin{equation*}
\gamma_{n}^{+}=\underset{t \in C_{n}}{\operatorname{ess} \sup ^{2}} E^{+}\left(x_{t} \mid \mathfrak{F}_{n}\right) \leq E\left(\sup _{j} x_{j}^{+} \mid \mathfrak{F}_{n}\right), \tag{50}
\end{equation*}
$$

then

$$
\begin{align*}
E\left(\left(\gamma_{t}^{\prime}\right)^{+}\right) \leq E\left(\gamma_{t}^{+}\right) & =\sum_{n=1}^{\infty} \int_{[t=n]} \gamma_{n}^{+} \leq \sum_{n=1}^{\infty} \int_{[t=n]} E\left(\sup _{j} x_{j}^{+} \mid \mathfrak{F}_{n}\right) \tag{51}\\
& =E\left(\sup _{j} x_{j}^{+}\right)
\end{align*}
$$

Theorem 5. (a) If $\left\{y_{n}\right\}_{1}^{\infty} \in D$ and is C-regular, then $y_{n} \geq \gamma_{n}$ for each $n \geq 1$;
(b) $A^{*} \Rightarrow\left\{\gamma_{n}\right\}_{1}^{\infty}$ is semiregular;
(c) A^{-}or $A^{+} \Rightarrow\left\{\gamma_{n}\right\}_{1}^{\infty}$ is regular;
(d) $\left\{\gamma_{n}\right\}_{1}^{\infty}$ is C-regular.

Proof. (a) If $\left\{y_{n}\right\}_{1}^{\infty} \in D$ and is C-regular, then

$$
\begin{equation*}
\gamma_{n}=\underset{t \in C_{n}}{\operatorname{ess} \sup _{n}} E\left(x_{t} \mid \mathfrak{F}_{n}\right) \leq \underset{t \in C_{n}}{\operatorname{ess} \sup _{n}} E\left(y_{t} \mid \mathfrak{F}_{n}\right) \leq y_{n} \tag{52}
\end{equation*}
$$

(b) Let τ be any s.v. such that $P[\tau \geq n]=1$ and $E\left(\gamma_{\tau}\right)$ exists. For arbitrary $\epsilon>0, k \geq n$, and $m \geq 1$, setting $A_{m}=\left[\gamma_{n}<m\right]$, we have

$$
\begin{equation*}
m \geq \int_{A_{m}} \gamma_{n} \geq \int_{A_{m}} \gamma_{n+1} \geq \cdots \geq \int_{A_{m}} \gamma_{k} \geq \cdots \tag{53}
\end{equation*}
$$

so that $\gamma_{k}<\infty$ on A_{m}. Hence, $\gamma_{k}<\infty$ on $A=\left[\gamma_{n}<\infty\right]$. By lemma 6, we can choose $t_{k} \in C_{k}$ such that

$$
\begin{equation*}
E\left(x_{t_{k}} \mid F_{k}\right)>\gamma_{k}-\epsilon \quad \text { on } \quad A \tag{54}
\end{equation*}
$$

Define

$$
t= \begin{cases}t_{k} & \text { on } A[\tau=k], \tag{55}\\ \tau & \text { off } A\end{cases}
$$

Then $E\left(x_{t}\right)$ exists, and on A,

$$
\begin{align*}
E\left(x_{t} \mid \mathfrak{F}_{n}\right) & =E\left(\sum_{k=n}^{\infty} I_{[\tau=k]} \cdot E\left(x_{t_{k}} \mid F_{k}\right) \mid \mathfrak{F}_{n}\right) \geq E\left(\sum_{k=n}^{\infty} I_{[\tau=k]}\left(\gamma_{k}-\epsilon\right) \mid F_{n}\right) \tag{56}\\
& =E\left(\gamma_{\gamma} \mid \mathfrak{F}_{n}\right)-\epsilon
\end{align*}
$$

and therefore on A, by the remark preceding lemma 1 ,

$$
\begin{equation*}
\gamma_{n}=\underset{t \in \widetilde{C}_{n}}{\operatorname{ess} \sup } E\left(x_{t} \mid \mathfrak{F}_{n}\right) \geq E\left(\gamma_{\tau} \mid \mathfrak{F}_{n}\right)-\epsilon \tag{57}
\end{equation*}
$$

(recall that $\widetilde{C}_{n}=$ all s.v.'s $t \geq n$ such that $E\left(x_{t}\right)$ exists). Hence,

$$
\begin{equation*}
\gamma_{n} \geq E\left(\gamma_{\tau} \mid F_{n}\right) \tag{58}
\end{equation*}
$$

on Ω.
Now let t be any s.v. such that $E\left(\gamma_{t}\right)$ exists. Set $\tau=\max (t, n)$. Then if $E\left(\gamma_{t}^{+}\right)=\infty, E\left(\gamma_{t}^{-}\right)<\infty$, and hence

$$
\begin{equation*}
E\left(\gamma_{\tau}^{-}\right)=\int_{[t>n]} \gamma_{\imath}^{-}+\int_{[t \leq n]} \gamma_{n}^{-}<\infty, \tag{59}
\end{equation*}
$$

while if $E\left(\gamma_{t}^{+}\right)<\infty$, then

$$
\begin{equation*}
E\left(\gamma_{\tau}^{+}\right)=\int_{[t>n]} \gamma_{t}^{+}+\int_{[t \leq n]} \gamma_{n}^{+}<\infty \tag{60}
\end{equation*}
$$

since

$$
\begin{equation*}
\infty>\int_{[t \leq n]} \boldsymbol{\gamma}_{t}=\sum_{k=1}^{n} \int_{[t=k]} \boldsymbol{\gamma}_{k} \geq \sum_{k=1}^{n} \int_{[t=k]} \gamma_{n}=\int_{[t \leq n]} \boldsymbol{\gamma}_{n} . \tag{61}
\end{equation*}
$$

Hence $E\left(\gamma_{\tau}\right)$ exists. By the previous result, $\gamma_{n} \geq E\left(\gamma_{\tau} \mid F_{n}\right)$, and hence,

$$
\begin{equation*}
t \geq n \Rightarrow \gamma_{n} \geq E\left(\gamma_{\tau} \mid \mathfrak{F}_{n}\right)=E\left(\gamma_{t} \mid \mathfrak{F}_{n}\right) \tag{62}
\end{equation*}
$$

(c) This statement follows from (b) and lemma 7.
(d) For $0 \leq b<\infty$, let $x_{n}(b)=\min \left(x_{n}, b\right)$, and let $\gamma_{n}^{b}\left(\leq \gamma_{n}\right)$ denote γ_{n} for the sequence $\left\{x_{n}(b)\right\}_{1}^{\infty}$. As $b \rightarrow \infty,-x_{n}^{-} \leq \gamma_{n}^{b} \uparrow \tilde{\gamma}_{n}$, say, where $\tilde{\gamma}_{n} \leq \gamma_{n}$, and for any t in $C_{n}, x_{t}(b) \geq-x_{t}^{-}$, so that $E\left(x_{t}(b) \mid F_{n}\right) \uparrow E\left(x_{t} \mid F_{n}\right)$. Since $\tilde{\gamma}_{n} \geq \gamma_{n}^{b} \geq$ $E\left(x_{t}(b) \mid \mathfrak{F}_{n}\right), \tilde{\gamma}_{n} \geq E\left(x_{t} \mid \mathfrak{F}_{n}\right)$, and hence $\tilde{\gamma}_{n} \geq \gamma_{n}, \tilde{\gamma}_{n}=\gamma_{n}$. Now if $t \in C$, then by (c), $t \geq n \Rightarrow E\left(\gamma_{i}^{b} \mid F_{n}\right) \leq \gamma_{n}^{b} \leq \gamma_{n}$. As $b \rightarrow \infty$, since $\gamma_{t}^{b} \geq-x_{t}^{-}$and $E\left(x_{t}^{-}\right)<\infty$, $t \geq n \Rightarrow E\left(\gamma_{t} \mid \mathfrak{F}_{n}\right) \leq \gamma_{n}$, so $\left\{\gamma_{n}\right\}_{1}^{\infty}$ is C-regular.

Corollary 1. (a) The sequence $\left\{\gamma_{n}\right\}_{1}^{\infty}$ is the minimal C-regular element of D.
(b) Condition A^{*} implies that $\left\{\gamma_{n}\right\}_{1}^{\infty}$ is the minimal semiregular element of D.
(c) Either A^{-}or A^{+}implies that $\left\{\gamma_{n}\right\}_{1}^{\infty}$ is the minimal regular element of D.

We remark that under $A^{-}, E\left(\sup _{n} \gamma_{n}^{-}\right) \leq E\left(\sup _{n} x_{n}^{-}\right)<\infty$. Hence, by a wellknown theorem, $\left\{\gamma_{n}\right\}_{1}^{\infty}$ is regular, and similarly for $\left\{\gamma_{n}^{\prime}\right\}_{1}^{\infty}$. By theorems 4 and $5(\mathrm{a}),\left\{\gamma_{n}^{\prime}\right\}_{1}^{\infty}=\left\{\gamma_{n}\right\}_{1}^{\infty}$, which gives an alternative proof of theorem 3.

Corollary 2. If $\gamma_{n}^{b}=\operatorname{ess} \sup _{t \in C_{n}} E\left(\min \left(x_{t}, b\right) \mid \mathfrak{F}_{n}\right)$, then

$$
\begin{equation*}
\gamma_{n}=\lim _{b \rightarrow \infty} \gamma_{n}^{b} \quad(n \geq 1) \tag{63}
\end{equation*}
$$

8. Almost optimal stopping variables

Lemma 8. If $v<\infty$, then for any $\epsilon>0, P\left[x_{n} \geq \gamma_{n}-\epsilon\right.$, i.o. $]=1$.
Proof. Since $\infty>v=E\left(\gamma_{1}\right) \geq E\left(\gamma_{2}\right) \geq \cdots$, we have $P\left[\gamma_{n}<\infty\right]=1$ for each $n \geq 1$. Choose any $\epsilon>0$ and $r>0$, and define for $n \geq 1$,

$$
\begin{equation*}
B_{n}=\left[E\left(x_{t_{n}} \mid F_{n}\right)>\gamma_{n}-\frac{\epsilon}{r}\right] \tag{64}
\end{equation*}
$$

where $\left\{t_{n}\right\}_{1}^{\infty}$ is chosen by lemma 1 for each $n \geq 1$ so that $t_{n} \in C_{n}$ and $P\left(B_{n}\right)>$ $1-1 / r$ (convergence a.e. \Rightarrow convergence in probability). Define

$$
\begin{equation*}
B=\left[x_{n}<\gamma_{n}-\epsilon \text { for all } n \geq m\right] \tag{65}
\end{equation*}
$$

where m is any fixed positive integer. Then

$$
\begin{equation*}
x_{n} \leq \gamma_{n}-\epsilon I_{B} \quad \text { for } n \geq m \tag{66}
\end{equation*}
$$

so on B_{n} for any $n \geq m$,

$$
\begin{array}{rlr}
\gamma_{n}-\frac{\epsilon}{r}<E\left(x_{t_{n}} \mid \mathfrak{F}_{n}\right) & \leq E\left(\gamma_{t_{n}} \mid \mathfrak{F}_{n}\right)-\epsilon P\left(B \mid \mathfrak{F}_{n}\right) \tag{67}\\
& \leq \gamma_{n}-\epsilon P\left(B \mid \mathfrak{F}_{n}\right) \quad \text { by theorem } 5(\mathrm{~d}) .
\end{array}
$$

Hence on $B_{n}, P\left(B \mid \mathfrak{F}_{n}\right) \leq 1 / r$, and therefore $P\left(B B_{n}\right) \leq 1 / r$. It follows that $P(B) \leq P\left(B B_{n}\right)+P\left(\Omega-B_{n}\right) \leq(1 / r)+(1 / r)=(2 / r)$. Since r can be arbitrarily large, $P(B)=0$, and therefore,

$$
\begin{equation*}
P\left[x_{n} \geq \gamma_{n}-\epsilon \text { for some } n \geq m\right]=1 \tag{68}
\end{equation*}
$$

and

$$
\begin{equation*}
P\left[x_{n} \geq \gamma_{n}-\epsilon, \text { i.o. }\right]=\lim _{m \rightarrow \infty} 1=1 \tag{69}
\end{equation*}
$$

Theorem 6. For any $\epsilon \geq 0$, define

$$
\begin{equation*}
s=\text { first } n \geq 1 \text { such that } x_{n} \geq \gamma_{n}-\epsilon(s=\infty \text { if no such } n \text { exists }) \tag{70}
\end{equation*}
$$

Assume the following: (a) $P[s<\infty]=1$,
(b) $E\left(x_{\mathrm{s}}\right)$ exists,
(c) $\liminf _{n \rightarrow \infty} \int_{[s>n]} E^{+}\left(\gamma_{n+1} \mid \mathfrak{F}_{n}\right)=0$.

Then $E\left(x_{s}\right) \geq v-\epsilon$.
Proof. We can assume $E\left(x_{s}\right)<\infty$. Since $\gamma_{s} \leq x_{s}+\epsilon, E\left(\gamma_{s}\right)<\infty$. Now

$$
\begin{align*}
v & =E\left(\gamma_{1}\right)=\int_{[s=1]} \gamma_{s}+\int_{[s>1]} E\left(\gamma_{2} \mid \mathfrak{F}_{1}\right) \tag{7.1}\\
& =\int_{[s=1]} \gamma_{s}+\int_{[s=2]} \gamma_{s}+\int_{[s>2]} E\left(\gamma_{3} \mid \mathfrak{F}_{2}\right)=\cdots \\
& =\int_{[1 \leq s \leq n]} \gamma_{s}+\int_{[s>n]} E\left(\gamma_{n+1} \mid F_{n}\right) \leq \int_{[1 \leq s \leq n]} \gamma_{s}+\int_{[s>n]} E^{+}\left(\gamma_{n+1} \mid F_{n}\right)
\end{align*}
$$

Letting $n \rightarrow \infty, v \leq E\left(\gamma_{s}\right) \leq E\left(x_{s}\right)+\epsilon$.
Corollary. For any $\epsilon \geq 0$, define s by (70). Then
(i) for $\epsilon>0, A^{+} \Rightarrow P[s<\infty]=1$ and $E\left(x_{s}\right) \geq v-\epsilon$;
(ii) for $\epsilon=0,\left\{A^{+}, P[s<\infty]=1\right\} \Rightarrow E\left(x_{s}\right)=v$.

Proof. Condition A^{+}implies $v<\infty$, and by lemma 8, this implies that $P[s<\infty]=1$. Condition A^{+}also implies (b) and (c).

Theorem 7. Let $\left\{\alpha_{n}\right\}_{1}^{\infty}$ be any sequence of r.v.'s such that α_{n} is $\left(\mathfrak{F}_{n}\right)$ measurable and $E\left(\alpha_{n}\right)$ exists for each $n \geq 1$, and such that
(a)

$$
\alpha_{n}=\max \left(x_{n}, E\left(\alpha_{n+1} \mid \mathfrak{F}_{n}\right)\right),
$$

(b) $P\left[x_{n} \geq \alpha_{n}-\epsilon\right.$ i.o. $]=1$ for every $\epsilon>0$,
(c) $\left\{E^{+}\left(\alpha_{n+1} \mid \mathfrak{F}_{n}\right)\right\}_{1}^{\infty}$ is uniformly integrable,
(d)

$$
\text { either } E\left(\sup _{n} \alpha_{n}^{-}\right)<\infty, \text { or } A^{+} \text {holds }
$$

Then for each $n \geq 1, \alpha_{n} \leq \gamma_{n}$.
Proof. For $m \geq 1, A \in \mathcal{F}_{m}$, and $\epsilon>0$, define $t=$ first $n \geq m$ such that $x_{n} \geq \alpha_{n}-\epsilon$. Then $P[m \leq t<\infty]=1$. If the first part of (d) holds, then $E\left(\alpha_{t}^{-}\right)<\infty$, and since $x_{t} \geq \alpha_{t}-\epsilon$, it follows that $E\left(x_{t}^{-}\right)<\infty$, and hence, by theorem 5(d),

$$
\begin{equation*}
\int_{A} \alpha_{t} \leq \int_{A} x_{t}+\epsilon \leq \int_{A} \gamma_{t}+\epsilon \leq \int_{A} \gamma_{m}+\epsilon \tag{72}
\end{equation*}
$$

If A^{+}holds, then $E\left(\alpha_{t}^{+}\right) \leq E\left(x_{t}^{+}\right)+\epsilon<\infty$, and the same result follows from theorem 5(c). Now

$$
\begin{align*}
& \int_{A} \alpha_{m}=\int_{A[t=m]} \alpha_{t}+\int_{A[t>m]} \alpha_{m+1}=\cdots=\int_{A[m \leq t \leq m+k]} \alpha_{t} \tag{73}\\
& \quad+\int_{A[t>m+k]} \alpha_{m+k+1} \leq \int_{A[m \leq t \leq m+k]} \alpha_{t}+\int_{A[t>m+k]} E^{+}\left(\alpha_{m+k+1} \mid F_{m+k}\right)
\end{align*}
$$

Letting $k \rightarrow \infty$, it follows from (c) that

$$
\begin{equation*}
\int_{A} \alpha_{m} \leq \int_{A} \alpha_{t} \leq \int_{A} \gamma_{m}+\epsilon \tag{74}
\end{equation*}
$$

so since ϵ was arbitrarily small, $\int_{A} \alpha_{m} \leq \int_{A} \gamma_{m}$, and therefore, $\alpha_{m} \leq \gamma_{m}$.

Corollary. Assume that A^{-}holds. If $\left\{\alpha_{n}\right\}_{1}^{\infty}$ is any sequence such that α_{n} is measurable $\left(\mathfrak{F}_{n}\right), E\left(\alpha_{n}\right)$ exists for each $n \geq 1$, and (a), (b), and (c) hold, then

$$
\begin{equation*}
\alpha_{n}=\gamma_{n} . \tag{75}
\end{equation*}
$$

Proof. By theorems 7, 3, and 4, since A^{-}implies (d),

$$
\begin{equation*}
\gamma_{n}^{\prime} \leq \alpha_{n} \leq \gamma_{n}=\gamma_{n}^{\prime} \tag{76}
\end{equation*}
$$

9. A theorem of Dynkin

We next prove a slight generalization of a theorem of Dynkin [3]. Let $\left\{z_{n}\right\}_{1}^{\infty}$ be a homogeneous discrete time Markov process with arbitrary state space Z. For any nonnegative measurable function $g(\cdot)$ on Z, define the function $P g(\cdot)$ by

$$
\begin{equation*}
\operatorname{Pg}(z)=E\left(g\left(z_{n+1}\right) \mid z_{n}=z\right), \tag{77}
\end{equation*}
$$

and set

$$
\begin{equation*}
Q g=\max (g, P g), \quad Q_{\theta}^{k+1}=Q\left(Q^{k} g\right), \quad(k \geq 0), \quad Q_{\theta}^{\circ}=g \tag{78}
\end{equation*}
$$

Then $g \leq Q g \leq Q^{2} g \leq \cdots$, so

$$
\begin{equation*}
h=\lim _{N \rightarrow \infty} Q^{N} g \tag{79}
\end{equation*}
$$

exists. Let $\mathfrak{F}_{n}=\mathbb{B}\left(z_{1}, \cdots, z_{n}\right)$ and consider the sequence $\left\{x_{n}\right\}_{1}^{\infty}$ with $x_{n}=g\left(z_{n}\right)$.
Theorem 8. For the process defined above, $\sup _{t} E\left(g\left(z_{t}\right)\right)=E\left(h\left(z_{1}\right)\right)$.
Proof. By theorem 3,

$$
\begin{equation*}
\gamma_{1}=\gamma_{1}^{\prime}=\lim _{N \rightarrow \infty} \gamma_{1}^{N} \tag{80}
\end{equation*}
$$

where

$$
\begin{align*}
& \gamma_{N}^{N}=g\left(z_{N}\right) \\
& \gamma_{N-1}^{N}=\max \left(g\left(z_{N-1}\right), E\left(g\left(z_{N}\right) \mid z_{N-1}\right)\right)=Q g\left(z_{N-1}\right), \\
& \gamma_{N-2}^{N}=\max \left(g\left(z_{N-2}\right), E\left(Q g\left(z_{N-1}\right) \mid z_{N-2}\right)\right)=\max \left(g\left(z_{N-2}\right), P Q g\left(z_{N-2}\right)\right) \\
& \quad=\max \left(g\left(z_{N-2}\right), \operatorname{Pg}\left(z_{N-2}\right), P Q g\left(z_{N-2}\right)\right)=Q^{2} g\left(z_{N-2}\right), \tag{81}\\
& \cdot \\
& \cdot \\
& \gamma_{1}^{N}=Q^{N-1} g\left(z_{1}\right) \rightarrow h\left(z_{1}\right) \quad \text { as } \quad N \rightarrow \infty .
\end{align*}
$$

Hence $\gamma_{1}=h\left(z_{1}\right)$ and $v=E\left(\gamma_{1}\right)=E\left(h\left(z_{1}\right)\right)$.

10. The triple limit theorem

Lemma 9. Assume A^{+}holds, and define

$$
\begin{array}{rlr}
x_{n}(a) & =\max \left(x_{n},-a\right), & (0 \leq a<\infty) \\
\gamma_{n}^{a} & =\underset{P[t \geq n]=1}{\operatorname{ess} \sup _{1} E\left(x_{t}(a) \mid \mathfrak{F}_{n}\right)} . \tag{82}
\end{array}
$$

Then

$$
\begin{equation*}
\gamma_{n}=\lim _{a \rightarrow \infty} \gamma_{n .}^{a} \tag{83}
\end{equation*}
$$

Proof. Since $\gamma_{n}^{a}=\max \left(x_{n}(a), E\left(\gamma_{n+1}^{a} \mid \mathfrak{F}_{n}\right)\right)$ and $\gamma_{n}(a) \downarrow \gamma_{n}^{*}$, say, as $a \rightarrow \infty$, where $\gamma_{n}^{*} \geq \gamma_{n}$, it follows from A^{+}that $\gamma_{n}^{*}=\max \left(x_{n}, E\left(\gamma_{n+1}^{*} \mid \mathfrak{F}_{n}\right)\right)$. For any $\epsilon>0$ and $m \geq 1$, define $s=$ first $n \geq m$ such that $x_{n} \geq \gamma_{n}^{*}-\epsilon(=\infty$ if no such n exists). Then $\left\{\gamma_{\min (s, n)}^{*}\right\}_{n=m}^{\infty}$ is a martingale, since

$$
\begin{align*}
E\left(\gamma_{\min (s, n+1)}^{*}\right) & =I_{[s>n]} E\left(\gamma_{n+1}^{*} \mid \mathfrak{F}_{n}\right)+I_{[s \leq n]} E\left(\gamma_{s}^{*} \mid \mathfrak{F}_{n}\right) \tag{84}\\
& =I_{[s>n]} \cdot \gamma_{n}^{*}+I_{[s=m]} \cdot \gamma_{m}^{*}+\cdots+I_{[s=n]} \cdot \gamma_{n}^{*}=\gamma_{\min (s, n)}^{*} .
\end{align*}
$$

Since $E\left(\left(\gamma_{\min (s, n)}^{*}\right)^{+}\right) \leq E\left(\sup _{n} x_{n}^{+}\right)<\infty$, and since $E\left(\left(\gamma_{m}^{*}\right)^{-}\right)<\infty$, we have by a martingale convergence theorem,

$$
\begin{equation*}
\gamma_{\min (s, n)}^{*} \rightarrow \text { a finite limit } \quad \text { as } n \rightarrow \infty \tag{85}
\end{equation*}
$$

and hence,

$$
\begin{equation*}
\gamma_{n}^{*} \rightarrow \text { a finite limit on }[s=\infty] \quad \text { as } n \rightarrow \infty \tag{86}
\end{equation*}
$$

But on [s $=\infty$], $\gamma_{n}^{*}>x_{n}+\epsilon$ for $n \geq m$, so

$$
\begin{equation*}
\lim _{n} \sup x_{n} \leq \lim _{n} \sup \gamma_{n}^{*}-\epsilon \quad \text { on } \quad[s=\infty] \tag{87}
\end{equation*}
$$

Since $\gamma_{n}^{a} \leq E\left(\sup _{j \geq m} x_{j}(a) \mid \mathfrak{F}_{n}\right)$ for $n \geq m$,

$$
\begin{equation*}
\lim _{n} \sup \gamma_{n}^{*} \leq \lim _{n} \sup \gamma_{n}^{a} \leq \sup _{j \geq m} x_{j}(a) \tag{88}
\end{equation*}
$$

and hence,

$$
\begin{equation*}
\lim _{n} \sup \gamma_{n}^{*} \leq \lim _{n} \sup x_{n}(a)=\max \left(\lim _{n} \sup x_{n},-a\right) \tag{89}
\end{equation*}
$$

and
(90) $\quad \lim _{n} \sup \gamma_{n}^{*} \leq \lim _{n} \sup x_{n}$,
but $\gamma_{n}^{*} \geq x_{n}$. Hence,

$$
\begin{equation*}
\limsup _{n} \gamma_{n}^{*}=\lim _{n} \sup x_{n} \tag{91}
\end{equation*}
$$

contradicting (87) unless $P[s=\infty]=0$. Hence,

$$
\begin{equation*}
P\left[x_{n} \geq \gamma_{n}^{*}-\epsilon, \text { i.o. }\right]=1 \tag{92}
\end{equation*}
$$

and by theorem 7, $\gamma_{n}^{*} \leq \gamma_{n}$. Therefore, $\gamma_{n}^{*}=\gamma_{n}$.
Theorem 9. The random variables γ_{n} are equal to

$$
\begin{equation*}
\gamma_{n}=\lim _{b \rightarrow \infty} \lim _{a \rightarrow-\infty} \lim _{N \rightarrow \infty} \gamma_{n}^{N}(a, b) \tag{93}
\end{equation*}
$$

where

$$
\begin{equation*}
\gamma_{n}^{N}(a, b)=\underset{P[n \leq t \leq N]=1}{\operatorname{ess} \sup _{n}} E\left(x_{t}(a, b) \mid \mathfrak{F}_{n}\right) \tag{94}
\end{equation*}
$$

and

$$
x(a, b)=\left\{\begin{array}{lll}
a & \text { if } & x<a \tag{95}\\
x & \text { if } & a \leq x \leq b \\
b & \text { if } & x>b
\end{array}\right.
$$

Proof. This follows from lemma 9, theorem 3, and corollary 2 of theorem 5.
Corollary 1. The values v_{n} are equal to

$$
\begin{equation*}
\lim _{b \rightarrow \infty} \lim _{a \rightarrow-\infty} \lim _{N \rightarrow \infty} v_{n}^{N}(a, b) \tag{96}
\end{equation*}
$$

Corollary 2. If $\left\{x_{n}\right\}_{1}^{\infty}$ is Markovian and $\mathfrak{F}_{n}=\mathbb{}\left(x_{1}, \cdots, x_{n}\right)$, then

$$
\begin{equation*}
\gamma_{n}=E\left(\gamma_{n} \mid x_{n}\right) \tag{97}
\end{equation*}
$$

If the x_{n} are independent, then

$$
\begin{equation*}
E\left(\gamma_{n+1} \mid \mathfrak{F}_{n}\right)=E\left(\gamma_{n+1}\right)=v_{n+1}, \tag{98}
\end{equation*}
$$

and the v_{n} satisfy the recursion relation

$$
\begin{equation*}
v_{n}=E\left\{\max \left(x_{n}, v_{n+1}\right)\right\} \tag{99}
\end{equation*}
$$

Proof. By induction $\gamma_{n}^{N}(a, b)=E\left(\gamma_{n}^{N}(a, b) \mid x_{n}\right)$ from $n=N$ down, as in the proof of the corollary of theorem 3. Letting N, a, b become infinite yields (97). Under independence,

$$
\begin{equation*}
E\left(\gamma_{n+1} \mid \mathfrak{F}_{n}\right)=E\left(E\left(\gamma_{n+1} \mid x_{n+1}\right) \mid \mathfrak{F}_{n}\right)=E\left(\gamma_{n+1}\right)=v_{n+1} . \tag{100}
\end{equation*}
$$

And from $\gamma_{n}=\max \left(x_{n}, E\left(\gamma_{n+1} \mid F_{n}\right)\right)=\max \left(x_{n}, v_{n+1}\right)$, we obtain (99) on taking expectations.

11. Remarks on the independent case

Theorem 10. Let the $\left\{x_{n}\right\}_{1}^{\infty}$ be independent with $\mathfrak{F}_{n}=B\left(x_{1}, \cdots, x_{n}\right)$. Set $s=$ first $n \geq 1$ such that $x_{n} \geq \gamma_{n}-\epsilon$ for $\epsilon>0$ ($=\infty$ if no such n exists). Then

$$
\begin{equation*}
v<\infty \Rightarrow P[s<\infty]=1, \tag{101}
\end{equation*}
$$

and if in addition $E\left(x_{s}\right)$ exists, then

$$
\begin{equation*}
E\left(x_{s}\right) \geq v-\epsilon . \tag{102}
\end{equation*}
$$

Proof. By lemma 8 and theorem 6 , since by (87)

$$
\begin{equation*}
\int_{[s>n]} E^{+}\left(\gamma_{n+1} \mid \mathfrak{F}_{n}\right)=\int_{[s>n]} v_{n+1}^{+}=v_{n+1}^{+} P[s>n] \leq v^{+} P[s>n] \rightarrow 0 . \tag{103}
\end{equation*}
$$

We remark that when $\epsilon=0$ the conditions $v<\infty, P[s<\infty]=1, E\left(x_{s}\right)$ exists, imply $E\left(x_{s}\right)=v$.

Theorem 11. Let the $\left\{x_{n}\right\}_{1}^{\infty}$ be independent with $\mathfrak{F}_{n}=@\left(x_{1}, \cdots, x_{n}\right)$, and let $\left\{\alpha_{n}\right\}_{1}^{\infty}$ be any sequence of r.v.'s such that α_{n} is measurable $\left(\mathfrak{F}_{n}\right)$ and $E\left(\alpha_{n}\right)$ exists, $n \geq 1$. If
(a) $\alpha_{n}=\max \left(x_{n}, E\left(\alpha_{n+1} \mid F_{n}\right)\right),(n \geq 1)$,
(b) $P\left(x_{n} \geq \alpha_{n}-\epsilon\right.$ i.o. $)=1$ for every $\epsilon>0$,
(c) $E\left(\alpha_{n+1} \mid \mathcal{F}_{n}\right)=c_{n}=$ constant, with $E\left(\alpha_{1}\right)=c_{1}<\infty$,
(d) A^{+}holds, or $\underset{n}{\liminf } E\left(x_{n}\right)>-\infty$,
then
(104)

$$
\alpha_{n} \leq \gamma_{n}
$$

$$
(n \geq 1)
$$

Proof. Define A and t as in theorem 7. Since

$$
\begin{equation*}
c_{n}=E\left\{\max \left(x_{n+1}, c_{n+1}\right) \mid \mathfrak{F}_{n}\right\} \geq c_{n+1} \tag{105}
\end{equation*}
$$

we have

$$
\begin{align*}
\int_{A} \alpha_{m} & =\int_{A[m \leq t \leq m+k]} \alpha_{t}+\int_{A[t>m+k]} \alpha_{m+k+1} \tag{106}\\
& =\int_{A[m \leq t \leq m+k]} \alpha_{t}+\int_{A[t>m+k]} c_{m+k} \\
& \leq \int_{A[m \leq t \leq m+k]} \alpha_{t}+c_{1} P[t>m+k] .
\end{align*}
$$

Hence under A^{+}(or A^{-}),

$$
\begin{align*}
\int_{A} \alpha_{m} & \leq \liminf _{k \rightarrow \infty} \int_{A[m \leq t \leq m+k]} \alpha_{t} \leq \liminf _{k \rightarrow \infty} \int_{A[m \leq t \leq m+k]} x_{t}+\epsilon \tag{107}\\
& \leq \liminf _{k \rightarrow \infty} \int_{A[m \leq t \leq m+k]} \gamma_{t}+\epsilon=\int_{A} \gamma_{t}+\epsilon \leq \int_{A} \gamma_{m}+\epsilon
\end{align*}
$$

by theorem 5 (c), so $\alpha_{m} \leq \gamma_{m}$. If the second part of (d) holds, then since $c_{n} \downarrow c$, say, where $c \geq \lim _{\inf _{n}} E\left(x_{n}\right)>-\infty$, and $x_{t} \geq c_{t}-\epsilon \geq c-\epsilon$, it follows that $E\left(x_{i}^{-}\right)<\infty$, so theorem $5(\mathrm{~d})$ yields the same conclusion.

Remarks. 1. Lemmas 2 and 3 are slight extensions of lemmas 1 and 2 of [2].
2. Theorem 1 has been proved independently by G. Haggstrom [4] when $E\left|x_{n}\right|<\infty$ and $E\left(\sup _{n} x_{n}^{+}\right)<\infty$, as have theorem 4, corollary 1(c) of theorem 5 under A^{+}, and the corollary of theorem 6. The latter was also proved by J. L. Snell [5].
3. We are greatly indebted to Mr. D. Siegmund for improvements in the statement and proof of many of our results. In particular, theorem 9 is largely due to him.

REFERENCES

[1] Y. S. Chow and H. Robbins, "A martingale system theorem and applications," Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Berkeley and Los Angeles, University of California Press, 1961, Vol. 1, pp. 93-104.
[2] -, "On optimal stopping rules," Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, Vol. 2 (1963), pp. 33-49.
[3] E. B. Dynkin, "The optimum choice of the instant for stopping a Markov process," Dokl. Akad. Nauk SSSR, Vol. 150 (1963), pp. 238-240; Soviet Math. Dokl., Vol. 4 (1963), pp. 627-629.
[4] G. Hagastrom, "Optimal stopping and experimental design," Ann. Math. Statist., Vol. 37 (1966), pp. 7-29.
[5] L. J. Snell, "Application of martingale system theorems," Trans. Amer. Math. Soc., Vol. 73 (1952), pp. 293-312.

[^0]: ${ }^{1}$ Research supported in part by National Science Foundation Grant NSF-GP-3694 at Columbia University, Department of Mathematical Statistics.
 ${ }^{2}$ Research supported by the Office of Naval Research under Contract No. Nonr-266(59), Project No. 042-205. Reproduction in whole or part is permitted for any purpose of the United States Government.

