A CLASS OF OPTIMAL STOPPING PROBLEMS

Y. S. CHOW and H. ROBBINS
Purdue University and Columbia University

1. Introduction and summary

Let x_{1}, x_{2}, \cdots, be independent random variables uniformly distributed on the interval [0,1]. We observe them sequentially, and must stop with some x_{i}, $1 \leq i<\infty$; the decision whether to stop with any x_{i} must be a function of the values x_{1}, \cdots, x_{i} only. (For a general discussion of optimal stopping problems we refer to [1], [3].) If we stop with x_{i} we lose the amount $i^{\alpha} x_{i}$, where $\alpha \geq 0$ is a given constant. What is the minimal expected loss we can achieve by the proper choice of a stopping rule?

Let C denote the class of all possible stopping rules t; then we wish to evaluate the function

$$
\begin{equation*}
v(\alpha)=\inf _{t \in C} E\left(t^{\alpha} x_{t}\right) . \tag{1}
\end{equation*}
$$

If there exists a t in C such that $E\left(t^{\alpha} x_{t}\right)=v(\alpha)$, we say that t is optimal for that value of α. Let C^{N} for $N \geq 1$ denote the class of all t in C such that $P[t \leq N]=1$; then $C^{1} \subset C^{2} \subset \cdots \subset C$, and hence, defining

$$
\begin{equation*}
v^{N}(\alpha)=\inf _{t \in C^{N}} E\left(t^{\alpha} x_{t}\right) \tag{2}
\end{equation*}
$$

we have

$$
\begin{equation*}
\frac{1}{2}=v^{1}(\alpha) \geq v^{2}(\alpha) \geq \cdots \geq v(\alpha) \geq 0 \tag{3}
\end{equation*}
$$

We shall show that as $N \rightarrow \infty$,

$$
v^{N}(\alpha) \sim \begin{cases}2(1-\alpha) / N^{1-\alpha} & \text { for } \quad 0 \leq \alpha<1 \tag{4}\\ 2 / \log N & \text { for } \quad \alpha=1\end{cases}
$$

from which it follows that

$$
\begin{equation*}
v(\alpha)=0, \quad \text { for } \quad 0 \leq \alpha \leq 1 \tag{5}
\end{equation*}
$$

(For $\alpha=0$, J. P. Gilbert and F. Mosteller [4] give the expression $v^{N}(0) \approx$ $2 /(N+\log (N+1)+1.767)$; this case is closely related to a problem of optimal selection considered in [2]. It can be shown that $N v^{N}(0) \uparrow 2$ as $N \rightarrow \infty$.)

Research supported by the Office of Naval Research under Contract Numbers Nonr-1100(26) and Nonr-266(59). Reproduction in whole or part is permitted for any purpose of the United States Government.

We shall show, moreover, that

$$
\left\{\begin{array}{rlr}
0<v(\alpha)<\frac{1}{2}, & \text { for } & 1<\alpha \leq 1.4 \tag{6}\\
v(\alpha)=\frac{1}{2}, & \text { for } & \alpha \geq 1.5
\end{array}\right.
$$

and that the relation

$$
\begin{equation*}
\lim _{N \rightarrow \infty} v^{N}(\alpha)=v(\alpha) \tag{7}
\end{equation*}
$$

holds for all $\alpha \geq 0$. No optimal rule exists for $0 \leq \alpha \leq 1$ by (5), since $E\left(t^{\alpha} x_{t}\right)>0$ for every t in C. We shall show that an optimal rule does exist for every $\alpha>1$; when $v(\alpha)=\frac{1}{2}$ the optimal rule is $t=1$, but for any α such that $0<v(\alpha)<\frac{1}{2}$ the optimal rule t is such that $E t=\infty$. The function $v(\alpha)$ is continuous for all $\alpha \geq 0$.

2. Proof of (4)

For any fixed $\alpha \geq 0$ and $N \geq 1$, set $v_{N+1}^{N}=\infty$ and define

$$
\begin{equation*}
v_{i}^{N}=E\left\{\min \left(i^{\alpha} x_{i}, v_{i+1}^{N}\right)\right\}=\int_{0}^{1} \min \left(i^{\alpha} x, v_{i+1}^{N}\right) d x \quad(i=N, \cdots, 1) \tag{8}
\end{equation*}
$$

The constants v_{i}^{N} can be computed recursively from (8), and by a familiar argument it follows that

$$
\begin{equation*}
v^{N}(\alpha)=v_{1}^{N}=E\left(t^{\alpha} x_{t}\right), \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
t=\text { first } \quad i \geq 1 \quad \text { such that } \quad i^{\alpha} x_{i} \leq v_{i+1}^{N} \tag{10}
\end{equation*}
$$

For the remainder of this section we shall regard N as a fixed positive integer and α as a fixed constant such that $0 \leq \alpha \leq 1$; for brevity we shall write v_{i} for v_{i}^{N}. Then from (8),

$$
\begin{equation*}
v_{i} \leq E\left(i^{\alpha} x_{i}\right)=i^{\alpha} / 2, \quad(i=1, \cdots, N) \tag{11}
\end{equation*}
$$

so that

$$
\begin{equation*}
v_{i+1} i^{-\alpha} \leq \frac{1}{2}\left(\frac{i+1}{i}\right)^{\alpha} \leq \frac{1}{2} \cdot 2^{\alpha} \leq 1, \quad(i=1, \cdots, N-1) \tag{12}
\end{equation*}
$$

Hence from (8),

$$
\begin{align*}
v_{i} & =\int_{0}^{v_{i+1 i^{-\alpha}}} i^{\alpha} x d x+\left(1-v_{i+1} i^{-\alpha}\right) v_{i+1} \tag{13}\\
& =v_{i+1}\left(1-\frac{v_{i+1}}{2 i^{\alpha}}\right), \quad(i=1, \cdots, N-1) .
\end{align*}
$$

Noting that $v_{i}>0$ for $i=1, \cdots, N$, we can rewrite (13) as

$$
\begin{align*}
& \frac{1}{v_{i}}=\frac{1}{v_{i+1}}+\frac{1}{2 i^{\alpha}-v_{i+1}}=\frac{1}{v_{i+1}}+\frac{1}{2 i^{\alpha}}+\frac{v_{i+1}}{2 i^{\alpha}\left(2 i^{\alpha}-v_{i+1}\right)}, \tag{14}\\
&(i=1, \cdots, N-1) .
\end{align*}
$$

Summing (14) for $i=1, \cdots, N-1$ and noting that from (8)

$$
\begin{equation*}
v_{N}=\frac{N^{\alpha}}{2} \tag{15}
\end{equation*}
$$

we obtain the formula

$$
\begin{equation*}
\frac{1}{v_{1}}=\frac{2}{N^{\alpha}}+\frac{1}{2} \sum_{1}^{N-1} \frac{1}{i^{\alpha}}+\frac{1}{2} \sum_{1}^{N-1} \frac{v_{i+1}}{i^{\alpha}\left(2 i^{\alpha}-v_{i+1}\right)} . \tag{16}
\end{equation*}
$$

We shall show at the end of this section that, setting

$$
\begin{equation*}
I_{N}=\frac{1}{2} \sum_{1}^{N-1} \frac{1}{i^{\alpha}}, \quad J_{N}=\frac{1}{2} \sum_{1}^{N-1} \frac{v_{i+1}}{i^{\alpha}\left(2 i^{\alpha}-v_{i+1}\right)} \tag{17}
\end{equation*}
$$

we have as $N \rightarrow \infty$

$$
J_{N}=o\left(I_{N}\right), \quad I_{N} \sim \begin{cases}N^{1-\alpha} / 2(1-\alpha), & (0 \leq \alpha<1) \tag{18}\\ \log N / 2, & (\alpha=1)\end{cases}
$$

Relations (4) follow from (9), (16), and (18).
Proof of (18). The second part of (18) follows from the relation

$$
\begin{equation*}
I_{N} \sim \frac{1}{2} \int_{1}^{N} \frac{d t}{t^{\alpha}} \tag{19}
\end{equation*}
$$

The first part of (18) follows from two lemmas.
Lemma 1. The following inequality holds:

$$
\begin{equation*}
v_{i} \leq \frac{2 N^{\alpha}}{N-i+1}, \quad(i=1, \cdots, N) \tag{20}
\end{equation*}
$$

Proof. Equation (20) holds for $i=N$ by (15). Suppose it holds for some $i+1=2, \cdots, N$; we shall show that it holds for i also.
(a). If $2 N^{\alpha} /(N-i)>i^{\alpha}$, then by (11),

$$
\begin{equation*}
v_{i} \leq \frac{i^{\alpha}}{2} \leq \frac{N^{\alpha}}{N-i} \leq \frac{2 N^{\alpha}}{N-i+1} \tag{21}
\end{equation*}
$$

(b). If $2 N^{\alpha} /(N-i) \leq i^{\alpha}$, then setting

$$
\begin{equation*}
f(x)=x\left(1-\frac{x}{2 i^{\alpha}}\right), \quad f^{\prime}(x)=1-\frac{x}{i^{\alpha}} \geq 0, \quad \text { for } \quad x \leq i^{\alpha} \tag{22}
\end{equation*}
$$

so by (13)

$$
\begin{equation*}
v_{i}=f\left(v_{i+1}\right) \leq f\left(\frac{2 N^{\alpha}}{N-i}\right)=\frac{2 N^{\alpha}}{N-i}\left(1-\frac{N^{\alpha}}{i^{\alpha}(N-i)}\right) \leq \frac{2 N^{\alpha}}{N-i+1} \tag{23}
\end{equation*}
$$

which completes the proof.
From (12) and (20) we have

$$
\begin{equation*}
J_{N}=\frac{1}{2} \sum_{1}^{N-1} \frac{v_{i+1}}{i^{\alpha}\left(2 i^{\alpha}-v_{i+1}\right)} \leq N^{\alpha} \sum_{i}^{N-1} \frac{1}{(N-i) i^{\alpha \alpha}} \tag{24}
\end{equation*}
$$

To prove the first part of (18), in view of the second part, it will suffice to show the following.

Lemma 2. As $N \rightarrow \infty$,

$$
N^{\alpha} \sum_{1}^{N-1} \frac{1}{(N-i) i^{\alpha \alpha}}= \begin{cases}o\left(N^{1-\alpha}\right), & (0 \leq \alpha \leq 1) \tag{25}\\ 0(1), & (\alpha=1)\end{cases}
$$

Proof. (a). Assume $0 \leq \alpha<1$. For any $0<\delta<1$, the left side of (25) can be written as

$$
\begin{align*}
N^{\alpha}\left(\sum_{1}^{[\delta N]}\right. & \left.+\sum_{[\delta N]+1}^{N-1}\right) \frac{1}{(N-i) i^{2 \alpha}} \tag{26}\\
& \leq N^{\alpha}\left(\frac{1}{N(1-\delta)} \sum_{1}^{N-1} \frac{1}{i^{\alpha}}+N(1-\delta)(\delta N)^{-2 \alpha}\right) \\
& \sim N^{\alpha}\left(\frac{1}{N(1-\delta)} \frac{N^{1-\alpha}}{1-\alpha}+N(1-\delta)(\delta N)^{-2 \alpha}\right) \sim \frac{(1-\delta) N^{1-\alpha}}{\delta^{2 \alpha}} .
\end{align*}
$$

Hence,

$$
\varlimsup_{N \rightarrow \infty} \frac{J_{N}}{N^{1-\alpha}} \leq \frac{1-\delta}{\delta^{2 \alpha}}
$$

Since δ can be arbitrarily near 1 , the left-hand side of (27) must be 0 .
(b). Assume $\alpha=1$. We have for the left-hand side of (25), setting $M=[N / 2]$,

$$
\begin{align*}
N \sum_{1}^{N-1} \frac{1}{(N-i) i^{2}} & =N\left(\sum_{1}^{M}+\sum_{M+1}^{N-1}\right) \frac{1}{(N-i) i^{2}} \leq 2 \sum_{1}^{M} i^{-2}+N \sum_{M+1}^{N-1} i^{-2} \tag{28}\\
& \leq 2 \int_{1 / 2}^{\infty} \frac{d t}{t^{2}}+N\left(\frac{N}{2}\right)\left(\frac{2}{N}\right)^{2}=0(1)
\end{align*}
$$

3. An optimal rule exists for $\alpha>1$ and $v(\alpha)>0$

Define $z_{n}=\inf _{i \geq n}\left(i^{\alpha} x_{i}\right)$. Then for any constant $0 \leq A \leq n^{\alpha}$, we have

$$
\begin{equation*}
P\left[z_{n} \geq A\right]=P\left[i^{\alpha} x_{i} \geq A ; i \geq n\right]=\prod_{n}^{\infty}\left(1-\frac{A}{i^{\alpha}}\right) \tag{29}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
P\left[z_{1} \geq \frac{1}{2}\right]=\prod_{1}^{\infty}\left(1-\frac{1}{2 i^{\alpha}}\right)>0 \tag{30}
\end{equation*}
$$

and therefore,

$$
\begin{equation*}
v(\alpha) \geq E z_{1}>0 \tag{31}
\end{equation*}
$$

Next, for any $A>0$,

$$
\begin{equation*}
\sum_{1}^{\infty} P\left[n^{\alpha} x_{n} \leq A\right] \leq \sum_{1}^{\infty} \frac{A}{n^{\alpha}}<\infty \tag{32}
\end{equation*}
$$

Hence, by the Borel-Cantelli lemma,

$$
\begin{equation*}
P\left[\lim _{n \rightarrow \infty} n^{\alpha} x_{n}=\infty\right]=1 \tag{33}
\end{equation*}
$$

The existence of an optimal t for $\alpha>1$ now follows from lemma 4 of [1].
4. For $\alpha \geq \frac{3}{2}, v(\alpha)=\frac{1}{2}$

We define for $i=1,2, \cdots$, and any fixed $\alpha \geq 0$,

$$
\begin{equation*}
v_{i}=\inf _{t \in C_{i}} E\left(t^{\alpha} x_{i}\right) \tag{34}
\end{equation*}
$$

where C_{i} denotes the class of all $t \in C$ such that $P[t \geq i]=1$. Then $v(\alpha)=$ $v_{1} \leq v_{2} \leq \cdots$. It can be shown [3], although it is not trivial to prove, that in analogy with (8),

$$
\begin{equation*}
v_{i}=E\left\{\min \left(i^{\alpha} x_{i}, v_{i+1}\right)\right\}=\int_{0}^{1} \min \left(i^{\alpha} x, v_{i+1}\right) d x, \quad(i \geq 1) \tag{35}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
v_{i} \leq \frac{i^{\alpha}}{2} \tag{36}
\end{equation*}
$$

From now on in this section we shall assume that $1<\alpha \leq \frac{3}{2}$. Then

$$
\begin{equation*}
v_{i+1} i^{-\alpha} \leq \frac{1}{2}\left(\frac{i+1}{i}\right)^{\alpha} \leq \frac{1}{2}\left(\frac{3}{2}\right)^{\alpha} \leq 1 \tag{37}
\end{equation*}
$$

Hence, as in (13),

$$
v_{i}=v_{i+1}\left(1-\frac{v_{i+1}}{2 i^{\alpha}}\right)
$$

and since $v_{1}=v(\alpha)>0$ for $\alpha>1$ by (31), we have as in (14),

$$
\begin{equation*}
\frac{1}{v_{i}}=\frac{1}{v_{i+1}}+\frac{1}{2 i^{\alpha}-v_{i+1}} \tag{39}
\end{equation*}
$$

Summing (39) for $i=n, \cdots, m-1$, we obtain

$$
\begin{equation*}
\frac{1}{v_{n}}=\frac{1}{v_{m}}+\sum_{n}^{m-1} \frac{1}{2 i^{\alpha}-v_{i+1}}, \quad(2 \leq n \leq m) \tag{40}
\end{equation*}
$$

From (29), for any $A>0$, we have as $m \rightarrow \infty$,

$$
\begin{equation*}
P\left[z_{m} \geq A\right]=\prod_{m}^{\infty}\left(1-\frac{A}{i^{\alpha}}\right) \rightarrow 1 \tag{41}
\end{equation*}
$$

thus $E z_{m} \rightarrow \infty$, and since $v_{m} \geq E z_{m}$, it follows that $v_{m} \rightarrow \infty$. Hence from (40),

$$
\begin{equation*}
\frac{1}{v_{n}}=\sum_{n}^{\infty} \frac{1}{2 i^{\alpha}-v_{i+1}} \tag{42}
\end{equation*}
$$

$$
(n \geq 2)
$$

From (42) and (37) we have for $n \geq 1$,

$$
\begin{align*}
\frac{1}{(\alpha-1) n^{\alpha-1}} & \geq \sum_{n+1}^{\infty} \frac{1}{i^{\alpha}} \geq \frac{1}{v_{n+1}} \geq \frac{1}{2} \sum_{n+1}^{\infty} \frac{1}{i^{\alpha}} \tag{43}\\
& \geq \frac{1}{2} \int_{n+1}^{\infty} \frac{d t}{t^{\alpha}}=\frac{1}{2(\alpha-1)(n+1)^{\alpha-1}}
\end{align*}
$$

and hence,

$$
\begin{equation*}
\frac{\alpha-1}{n} \leq \frac{v_{n+1}}{n^{\alpha}} \leq \frac{2(\alpha-1)}{n+1}\left(\frac{n+1}{n}\right)^{\alpha}, \quad(n \geq 1) \tag{44}
\end{equation*}
$$

We shall now show that $v_{2}>1$ for $\alpha=\frac{3}{2}$. It will follow from (35) that $v_{1}=\frac{1}{2}$ and that $t=1$ is optimal for $\frac{3}{2}$; the same is true a fortiori for any $\alpha \geq \frac{3}{2}$.

From (38) we obtain

$$
\begin{equation*}
v_{i+1}=i^{\alpha}-\sqrt{i^{2 \alpha}-2 i^{\alpha} v_{i}} \tag{45}
\end{equation*}
$$

the + sign being excluded because of (37). Suppose now that $v_{2} \leq 1$ for $\alpha=\frac{3}{2}$. Then by (45),

$$
\begin{align*}
& v_{3} \leq 2^{3 / 2}-\sqrt{8-2.2^{3 / 2}}=1.3, \\
& v_{4} \leq 3^{3 / 2}-\sqrt{27-2 \sqrt{27}(1.3)}=1.52, \tag{46}\\
& v_{5} \leq 4^{3 / 2}-\sqrt{64-16(1.52)}=1.7
\end{align*}
$$

On the other hand, by (44) we have for $\alpha=\frac{3}{2}$,

$$
\begin{equation*}
\frac{v_{n+1}}{n^{3 / 2}} \leq \frac{1}{n+1}\left(\frac{n+1}{n}\right)^{3 / 2} \leq \frac{1}{6}\left(\frac{6}{5}\right)^{3 / 2} \leq \frac{11}{50}, \quad(n \geq 5) \tag{47}
\end{equation*}
$$

Hence, from (42) for $\alpha=\frac{3}{2}$,

$$
\begin{align*}
\frac{1}{v_{5}} & =\sum_{5}^{\infty} \frac{1}{2 i^{\alpha}-v_{i+1}}=\sum_{5}^{\infty} \frac{1}{2 i^{\alpha}\left(1-\frac{v_{i+1}}{2 i^{\alpha}}\right)} \leq \sum_{5}^{\infty} \frac{1}{2 i^{\alpha}\left(1-\frac{11}{100}\right)} \tag{48}\\
& \leq \frac{50}{89} \int_{9 / 2}^{\infty} \frac{d t}{t^{\alpha}}=\frac{50}{89} \frac{1}{\alpha-1} \sqrt{\frac{2}{9}}=\frac{100}{89} \cdot \frac{\sqrt{2}}{3}<\frac{1}{1.7}
\end{align*}
$$

contradicting (46). Hence $v_{2}>1$ for $\alpha=\frac{3}{2}$.

5. If $1<\alpha \leq 1.4$, then $\boldsymbol{v}(\alpha)<\frac{1}{2}$

By (44) we have for $\alpha=\frac{7}{5}$,

$$
\begin{equation*}
v_{3} \leq \frac{4}{5} \cdot 3^{2 / 5}<\frac{5}{4}, \tag{49}
\end{equation*}
$$

and hence by (38), $v_{2}<\frac{5}{4}\left(1-\left(5 / 4.2 .2^{7 / 5}\right)\right)<1$. Hence by (35), $v_{1}=v\left(\frac{7}{5}\right)<\frac{1}{2}$.
For $\alpha>1$, an optimal t exists by section 3, and from ([3], theorem 2), a minimal optimal t is defined by

$$
\begin{equation*}
t=\text { first } n \geq 1 \text { such that } x_{n} \leq \frac{v_{n+1}}{n^{\alpha}} \tag{50}
\end{equation*}
$$

Let α be any constant >1 such that $v(\alpha)<\frac{1}{2}$. Then $P[t>1]>0$ by (50), and for $\alpha<\frac{3}{2}$ we have from (44) that

$$
\begin{equation*}
\frac{v_{n+1}}{n^{\alpha}} \leq \frac{1}{n+1}\left(\frac{n+1}{n}\right)^{2}<\frac{n+1}{n^{2}}<1, \quad \text { for } \quad n \geq 2 \tag{51}
\end{equation*}
$$

Hence, $P[t>N]>0$ for every $N \geq 1$, so t is not bounded. In fact, if $1<\alpha=$ (3- ϵ) 2 for some $\epsilon>0$, then from (44)

$$
\begin{equation*}
\frac{v_{n+1}}{n^{\alpha}} \leq(1-\epsilon)\left(\frac{n+1}{n^{2}}\right) \leq \frac{1}{n}, \quad \text { for } \quad n \geq \frac{1-\epsilon}{\epsilon} \tag{52}
\end{equation*}
$$

Hence, if $v(\alpha)<\frac{1}{2}$, so that $P[t>N]>0$ for every $N \geq 1$, it follows that for $n>N \geq \frac{1-\epsilon}{\epsilon}$ and some $K>0$,

$$
\begin{equation*}
P[t>n] \geq K\left(1-\frac{1}{N}\right)\left(1-\frac{1}{N+1}\right) \cdots\left(1-\frac{1}{n}\right)=K \cdot \frac{N-1}{n} \tag{53}
\end{equation*}
$$

so that $E t=\sum_{0}^{\infty} P[t>n]=\infty$.
We thus have for $\alpha>1$: either $0<v(\alpha)<\frac{1}{2}$ and $E t=\infty$, or $v(\alpha)=\frac{1}{2}$ and $t=1$, where t is optimal for that α. The least value α^{*} such that $v\left(\alpha^{*}\right)=\frac{1}{2}$ is not known to us, but by the results of this and the previous section, it lies between 1.4 and 1.5.

6. The identification of optimal rules for $1<\alpha$

For $N=1,2, \cdots$, define t_{N} by (10). Then $t_{N} \leq t_{N+1} \leq \cdots$. Let $b_{i}=\lim _{N \rightarrow \infty} v_{i}^{N}$. Then from (8),

$$
\begin{equation*}
b_{i}=\int_{0}^{1} \min \left(i^{\alpha} x, b_{i+1}\right) d x, \quad(i=1,2, \cdots) \tag{54}
\end{equation*}
$$

Define

$$
\begin{align*}
s & =\text { first } i \geq 1 \text { such that } i^{\alpha} x_{i} \leq b_{i+1} \text { if such an } i \text { exists, } \tag{55}\\
& =\infty \text { otherwise. }
\end{align*}
$$

Then [1] $s=\lim _{N \rightarrow \infty} t_{N}$. Since $v_{i}^{N} \geq v_{i}$ for each $N, b_{i} \geq v_{i}$. Therefore $s \leq t$, where t is an optimal rule defined by (50). We shall now show that $s=t$ by showing that $b_{i}=v_{i}$ for all $i \geq 1$.

From (54) we have

$$
b_{i} \leq i^{\alpha} / 2, \quad(i \geq 1)
$$

and hence as in (37) and (39), for some $i_{0}=i_{0}(d)$,

$$
\begin{array}{cl}
b_{i+1} i^{-\alpha} \leq 1, & \left(i \geq i_{0}\right) \\
\frac{1}{b_{i}}=\frac{1}{b_{i+1}}+\frac{1}{2 i^{\alpha}-b_{i+1}}, & \left(i \geq i_{0}\right)
\end{array}
$$

Since $b_{i} \geq v_{i} \rightarrow \infty$ as $i \rightarrow \infty$, we have, as in (42),

$$
\begin{equation*}
\frac{1}{b_{n}}=\sum_{n}^{\infty} \frac{1}{2 i^{\alpha}-b_{i+1}}, \quad\left(n \geq i_{0}\right) \tag{58}
\end{equation*}
$$

Assume that for some $j \geq 1, b_{j}>v_{j}$. Then by (35) and (54) this inequality must hold for some $i_{1} \geq i_{0}$ (since if $j<i_{0}$ and $b_{i 0} \leq v_{i 0}$, then $b_{j} \leq v_{j}$), and hence for every $i \geq i_{1}$. Hence by (42) and (54),

$$
\begin{equation*}
\frac{1}{v_{i_{1}}}=\sum_{i=i_{1}}^{\infty} \frac{1}{2 i^{\alpha}-v_{i+1}}<\sum_{i=i_{1}}^{\infty} \frac{1}{2 i^{\alpha}-b_{i+1}}=\frac{1}{b_{i_{1}}} \tag{59}
\end{equation*}
$$

a contradiction. Hence $b_{j}=v_{j}$ for all $j \geq 1$.
It follows from the above that for $1<\alpha$,

$$
\begin{equation*}
v(\alpha)=v_{1}=b_{1}=\lim _{N \rightarrow \infty} v_{1}^{N}=\lim _{N \rightarrow \infty} v^{N}(\alpha) . \tag{60}
\end{equation*}
$$

That this relation holds also for $0 \leq \alpha \leq 1$ has been shown already.

7. Continuity of $v(\boldsymbol{\alpha})$

From (60), which holds for any $\alpha \geq 0$, given $\epsilon>0$ we can find $N=N(\alpha, \epsilon)$ so large that

$$
\begin{equation*}
v(\alpha)+\frac{\epsilon}{2} \geq v^{N}(\alpha)=E\left(t^{\alpha} x_{t}\right) \tag{61}
\end{equation*}
$$

for some t in C^{N}. Hence for $\alpha^{\prime}>\alpha$,

$$
\begin{equation*}
v(\alpha) \leq v\left(\alpha^{\prime}\right) \leq E\left(t^{\alpha^{\prime}} x_{t}\right) \leq N^{\alpha^{\prime}-\alpha} E\left(t^{\alpha} x_{t}\right) \leq N^{\alpha^{\prime}-\alpha}\left(v(\alpha)+\frac{\epsilon}{2}\right) \leq v(\alpha)+\epsilon, \tag{62}
\end{equation*}
$$

provided that $\alpha^{\prime}-\alpha$ is sufficiently small. Hence $v(\alpha)$ is continuous on the right for each $\alpha \geq 0$.

Since $v(\alpha)$ is nondecreasing in α for each fixed $i \geq 1$, we have by the bounded or monotone convergence theorem for integrals from (35)

$$
\begin{align*}
v_{i}(\alpha-0) & =\lim _{\epsilon \rightarrow 0} v_{i}(\alpha-\epsilon)=\lim _{\epsilon \rightarrow 0} \int_{0}^{1} \min \left(i^{\alpha-\epsilon}, v_{i+1}(\alpha-\epsilon)\right) d x \tag{63}\\
& =\int_{0}^{1} \min \left(i^{\alpha}, v_{i+1}(\alpha-0)\right) d x
\end{align*}
$$

and by the remark preceding (42), $\lim _{n \rightarrow \infty} v_{n}(\alpha-0)=\infty$ for $\alpha>1$. Hence, as in the preceding section, (58) holds with b_{n} replaced by $v_{n}(\alpha-0)$, and the argument shows that $v_{n}(\alpha-0)=v_{n}(\alpha)$. In particular, $v_{n}(\alpha-0)=v(\alpha)$, which shows that $v(\alpha)$ is continuous on the left for $\alpha>1$. Since $v(\alpha)=0$ for $0 \leq \alpha \leq 1$, it follows that $v(\alpha)$ is continuous on the left for each $\alpha \geq 0$.

REFERENCES

[1] Y. S. Chow and H. Robbins, "On optimal stopping rules," Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, Vol. 2 (1963), pp. 33-49.
[2] Y. S. Chow, S. Moriguti, H. Robbins, and S. M. Samuels, "Optimal selection based on relative rank," Israel J. Math., Vol. 2 (1964), pp. 81-90.
[3] Y. S. Chow and H. Robbins, "On values associated with a stochastic sequence," Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Berkeley and Los Angeles, University of California Press, 1966, Vol. I, pp. 427-440.
[4] J. P. Gilbert and F. Mosteller, "Recognizing the maximum of a sequence," J. Amer. Statist. Soc., Vol. 61 (1966), pp. 35-73.

