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1. Introduction

A dynamic programming problem is specified by four objects: S, A, q, r,
where S is a nonempty Borel set, the set of states of some system, A is a non-
empty Borel set, the set of acts available to you, q is the law of motion of the
system; it associates (Borel measurably) with each pair (s, a) a probability
distribution q(. s, a) on S: when the system is in state s and you choose act a,
the system moves to a new state selected according to q(- Is, a), and r is a bounded
Borel measurable function on S X A X S, the immediate return: when the system
is in state s, and you choose act a, and the system moves to s', you receive an
income r(s, a, s'). A plan 7r is a sequence 7r1, 7r2, . .. , where 7rn tells you how
to select an act on the n-th day, as a function of the previous history
h = (si, a,, * ,* an-,, SO) of the system, by associating with each h (Borel
measurably) a probability distribution 7rn(( Ih) on (the Borel subsets of) A.
Any sequence of Borel measurable functions fi, f2, * * , each mapping S into

A, defines a plan. When in state s on the n-th day, choose act fn(s). Plans 7r = {fn}
of this type may be called Markov plans. A single f defines a still more special
kind of plan: whenever in state s, choose act f(s). This plan is denoted by f(),
and plans f (X) are called stationary.
A plan 7r associates with each initial state s a corresponding expected n-th

period return rn(7r) (s) and an expected discounted total return

(1) Ip(7r)(s) = E -1r.(r) (s),

where , is a fixed discount factor, 0 < t < 1.
The problem of finding a 7r which maximizes I, was studied in [1]. Three of

the principal results obtained were the following.
RESULT (i). For any probability distribution p on S and any e > 0, there is a

stationary plan f (X) which is (p, E)-optimal; that is,

(2) p{4I(f (X)) > Ip(7r) - = 1 for all 7r.

RESULT (ii). Any bounded u which satisfies

(3) u(s) 2 f [r(s, a, *) + ,u(-)] dq(. 1s, a) for all s, a

is an upper bound on incomes;
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(4) IO(7r) < u for all ir.
RESULT (iii). If A is countable, the optimal return u* is the unique bounded

fixed point of the operator Up, mapping the set of bounded functions u on S into
itself, defined by

(5) Uou(s) = sup J [r(s, a, *) + ,3u(.)] dq(. Is, a),

that is, u* = sup,,I(r). Also U'u -* u* as n -4 00, for every bounded u.
In this paper we consider the positive (undiscounted) case r > 0, 3 = 1, and

we are interested in maximizing I(7r) = rn,(7r). A weakened form of (i) is
proved. Modified forms of (ii) and (iii) are obtained.
THEOREM 1. For any probability distribution p on S for which

(6) v = sup fI (7r) dp

is finite, and any E> 0, there is a stationary planf (0) which is weakly (p, e)-optimal,
that is

(7) f I(f()) dp > v- e.

THEOREM 2 (Compare [2], theorem 2.12.1). Any nonnegative u which satisfies

(8) u(s) 2 f [r(s, a, *) + u(.)] dq(. Is, a) for all s, a

is an upper bound on incomes;
(9) I(r) < u for all 7r.
THEOREM 3. If A is countable, the optimal return u* is the smallest nonnegative

fixed point of the operator U, taking the set of nonnegative (possibly +oo-valued)
functions on S into itself, defined by

(10) Uu(s) = sup f [r(s, a, *) + u(*)] dq(. is, a).

Also UnO -- u* as n -

2. Proofs

Theorem 1 is an easy consequence of (i): first choose wr so that f I(X) dp >
v - e; next, choose f3 < 1 so that f Ip(r) dp > v -e. Now invoke (i) to choose
f(X) in such a way that

(11) p{I4(f (X)) > Io(w)- = 1,
where a = Ip(7r) dp + e- v, so that

(12) f I(f ()) dp fIf (f ()) dp > f I4(,) dp -a = v -e.

Similarly, theorem 2 is an easy consequence of (ii): fix ,B < 1, and; define
w = min (u, R/(1 -#)), where R = SUP8,a,a' r(s, a, s'). We show that w satisfies
the hypothesis of (ii), that is,
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(13) w(s) 2 J [r(s, a, ) + w(-)] dq(- Is, a) for all s, a.

First,

(14) u(s) 2 J [r(s, a, ) + u()] dq(i Is, a)

> f [r(s, a, ) + w()] dq(- Is, a).

Second, putting R/(1 - i) = c,

(15) c = R + fSc > f [r(s, a, ) + 3w(-)] dq(* Is, a).
Thus,
(16) w = min (u, c) 2 f [r(s, a, ) + j3w(.)] dq(. Is, a).

So, (ii) implies that l(r) < u for all 7r, # < 1. Letting ,-B 1 yield I(r) < u.
For theorem 3, note that U is monotone: if u > v, then Uu > Uv. Hence,

Uno = u. increases with n, say to w. We show that w is a fixed point of U.
Define the operator Ta by

(17) Tau(s) = f [r(s, a, *) + u(.)] dq(. Is, a),
so that U = supa Ta. We have Tau. < Uun = u.+1 < Uw, so that (n -> oo)
TaW < w < Uw and (supa) Uw <w < Uw. The function w is the smallest non-
negative fixed point of U, since v > 0 and Uv = v imply, applying U n times to
v>O, v> UnO, so (n -o) v> w.
To identify the optimal return with w, note that, for any ,3 < 1, we have

U;0 < UnO, so that (n -X+ ) up < w. Thus,
(18) I(7r) < w for all 7r, and I(7r) < w for all 7r.
On the other hand,

sup 1(wr) 2 sup 4#(7r) = u* > Up(O), so that (,- 1),
(19)

SUp 1(r) 2 UnO; and (nm-00), sup 1(7r) w.

3. Remarks

(1) In the negative case, r < 0, j3 = 1, Dubins and Savage [2] have given
an example in which theorem 1 is false. Ralph Strauch has recently studied
the negative case extensively in his thesis, finding that it differs substantially
in other ways from the positive case.

(2) Here is an example in which no (p, c)-optimal stationary plan exists,
showing that (i) cannot be generally extended to the positive case. There is a
sequence p(l), p(2), * * * of primary states, a sequence s(1), s(2), - * * of secondary
states, and a terminal state t. From primary state p(n) we have two choices:
(1) move to secondary state s(2n- 1), or (2) move to the next primary state
p(n + 1) with probability 2, and to the terminal state t with probability 2.
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The immediate income is 0 no matter what happens. From secondary state s(n),
n > 2, you move to secondary state s(n - 1) and receive $1. In secondary
state s(1) you move to t and receive $1. Once state t is reached, you stay there
and receive nothing.

p(n) .5 p(n+l)

t Sl s(n) sin-0) 1 s(n) 5(2"-1)

FIGURE 1

The income from s(n) is n, and from t is 0. From p(n), by aiming for s(2n+k - 1)
via p(n + k), your expected income is (2n+k - 1)/2k = 2n - 2-k, so you can
get nearly 2n from p(n). The function u: u(p(n)) = 2n, u(s(n)) = n, u(t) = 0
satisfies the hypothesis of theorem 2 (with equality), so is the optimal return:
u = sup,, I(7r). But for any stationary plan fC(), either f elects to gamble at
every primary state so that I(f(")) = 0 for all p(n), or there is a primary state
p(no) from which f moves to s(2- - 1) so that I(f(-)) = 2- - 1 at p(no), one
dollar short of the optimal return at p(n0). So for any p which assigns positive
probability to every primary state and any e < 1, there is no (p, e)-optimal
stationary plan.

(3) In the above example, the optimal return is unbounded. Don Ornstein
(unpublished) has shown that for a certain class of (positive) problems with
bounded optimal return and countable state space, there is for every e > 0 an
e-optimal plan f (X) which is stationary:

(20) I(f('O))> I(r)- for all 7r, s.

His method appears to apply to any (positive) problem with bounded optimal
return and countable state space. Whether there is a (p, e)-optimal stationary
plan in every positive problem with bounded optimal return remains open.

(4) In the discounted case, if there is an optimal plan, there is one which
is stationary. Whether this is true in the positive case remains open, even for
bounded optimal return.

REFERENCES

[1] DAVID BLACKWELL, "Discounted dynamic programming," Ann. Math. Statist., Vol. 36

(1965), pp. 226-235.
[2] L. E. DUBINS and L. J. SAVAGE, How to Gamble If YQou Must, New York, McGraw-Hill,

1965.


