A NOTE ON MAXIMAL POINTS OF CONVEX SETS IN ℓ_{∞}

ROY RADNER
University of California, Berkeley

1. Introduction

The problem of characterizing maximal points of convex sets often arises in the study of admissible statistical decision procedures, of efficient allocation of economic resources (cf. Koopmans, [4], chapter 1, and references given there), and of mathematical programming (cf. Arrow, Hurwicz, and Uzawa, [2]).

Let C be a convex set in a finite dimensional vector space, partially ordered coordinate-wise (that is, for $x=\left(x_{i}\right)$ and $z=\left(z_{i}\right), x \geq z$ means that $x_{i} \geq z_{i}$ for every coordinate i. Let D be the set of all strictly positive vectors (namely vectors all of whose coordinates are strictly positive); further, let B be the set of vectors in C that maximize $\sum_{i} y_{i} x_{i}$ for some vector $y=\left(y_{i}\right)$ in D. It is obvious that every vector in B is maximal in C with respect to the partial ordering \leq. One can also show that every vector that is maximal in C also maximizes $\sum_{i} y_{i} x_{i}$ on C for some nonnegative vector y. Arrow, Barankin, and Blackwell [1] showed further that every vector maximal in C is in the (topological) closure of B. They also gave an example (in 3 dimensions) in which a vector in the closure of B (and in C) is not maximal in C.

The purpose of this note is to generalize the Arrow-Barankin-Blackwell result to the case of ℓ_{∞}, the space of bounded sequences topologized by the sup norm. In this generalization, however, the set C is assumed to be compact.

2. The theorem

Let X denote ℓ_{∞}, that is, the Banach space of all bounded sequences of real numbers, with the sup norm topology, where the norm of $x=\left(x_{i}\right)$ in X is

$$
\begin{equation*}
\|x\| \equiv \sup _{i}\left|x_{i}\right| . \tag{2.1}
\end{equation*}
$$

For x in X, I shall say that $x \geq 0$ if $x_{i} \geq 0$ for every i, and that $x>0$ if $x \geq 0$ but $x \neq 0$. Also, for $x^{1}=\left(x_{i}^{1}\right)$ and $x^{2}=\left(x_{i}^{2}\right)$ in X, I shall say that $x^{1} \geq x^{2}$ if $x^{1}-x^{2} \geq 0$ (and so on for $x^{1}>x^{2}$).

A point \hat{x} in a subset C of X will be called maximal in C if there is no x in C for which $x>\hat{x}$.

This research was supported in part by the Office of Naval Research under Contract ONR $222(77)$ with the University of California, and by a grant to the University from the National Science Foundation.

Let Y denote the set of all continuous linear functions on X. For any y in Y, I shall say that $y \geq 0$ if $y(x) \geq 0$ for all $x \geq 0$ in X, and that $y \gg 0$ if $y(x)>0$ for all $x>0$. Define

$$
\begin{align*}
S & \equiv\{y: y \in Y,\|y\|=1, y \geq 0\} \\
S^{+} & \equiv\{y: y \in S, y \gg 0\} \tag{2.2}
\end{align*}
$$

(Recall that for y in $Y,\|y\| \equiv \sup \{|y(x)|: x \in X .\|x\|=1\}$). It shall be understood that Y has the weak* topology, and that the Cartesian product $X \times Y$ has the corresponding product topology.

If $\hat{y} \gg 0$, and \hat{x} maximizes $\hat{y}(x)$ in a subset C of X, then \hat{x} is clearly maximal in C. On the other hand, if \hat{x} is maximal in a convex subset C of X, then there is a $\hat{y} \geq 0$ in Y such that \hat{x} maximizes $\hat{y}(x)$ in C. (To see this, consider the nonnegative orthant of X; this is a convex set with a nonempty interior, and its interior is disjoint from the convex set of all points $(x-\hat{x})$ for which x is in C. The hyperplane that separates these two convex sets corresponds to the required \hat{y}.) It is easy to see that there can be maximal points in a convex set C that do not maximize any strictly positive continuous linear function on C. The following theorem gives information about such points in the case in which C is compact.

Theorem. If \hat{x} is maximal in a compact convex subset C of X, then there is a \hat{y} in S such that
(1) \hat{x} maximizes $\hat{y}(x)$ on C, and
(2) (\hat{x}, \hat{y}) is the limit of a generalized sequence (x^{m}, y^{m}) of points in $C \times S^{+}$such that for each m, x^{m} is maximal in C and maximizes $y^{m}(x)$ on C.

Lemma 1. Define $f(x, y) \equiv y(x)$; then f is continuous on $X \times S$.
Proof. For any x, \bar{x} in X and y, \bar{y} in S,

$$
\begin{align*}
|f(x, y)-f(\bar{x}, \bar{y})| & =|y(x-\bar{x})+y(\bar{x})-\bar{y}(\bar{x})| \tag{2.3}\\
& \leq 1 \cdot\|x-\bar{x}\|+|y(\bar{x})-\bar{y}(\bar{x})|
\end{align*}
$$

Hence $\|x-\bar{x}\|<\epsilon / 2$ and $|y(\bar{x})-\bar{y}(\bar{x})|<\epsilon / 2$ imply $|f(x, y)-f(\bar{x}, \bar{y})|<\epsilon$, which completes the proof of the lemma.

Lemma 2. For any $p \gg 0$ in Y, define

$$
\begin{equation*}
S_{p} \equiv\{y: y \in S, y \geq p\} \tag{2.4}
\end{equation*}
$$

then for every $p \gg 0$ in Y, S_{p} is convex and compact.
Proof. The set S_{p} is immediately seen to be convex, as the intersection of two convex sets, S and $\{y: y \in Y . y \geq p\}$. Note that the latter set is also closed. The set S can also be characterized as $\{y: y \in Y, y \geq 0, y(e)=1\}$, where $e \equiv(1,1, \cdots$, etc. $\cdots)$, and is therefore clearly closed. Thus S is a closed subset of the unit sphere in Y, which, by Alaoglu's theorem, is compact in the weak* topology; hence, S is compact, and therefore also S_{p}.

Lemma 3. If $y(\bar{x}) \geq 0$ for every y in S^{+}, then $\bar{x} \geq 0$.
Proof. Suppose that $\bar{x}=\left(\bar{x}_{i}\right)$ and that for some $k, \bar{x}_{k}<0$. Let

$$
\begin{equation*}
q_{k} \equiv \frac{\|\bar{x}\|-\left(\frac{1}{2}\right) \bar{x}_{k}}{\|\bar{x}\|-\bar{x}_{k}} \tag{2.5}
\end{equation*}
$$

let $q_{j}(j \neq k)$ be any sequence of positive numbers such that

$$
\begin{equation*}
\sum_{j \neq k} q_{j}=1-q_{k}, \tag{2.6}
\end{equation*}
$$

and define $q(x) \equiv \sum_{i} q_{i} x_{i}$. It is easy to verify that $q \gg 0,\|q\|=1$, and $q(\bar{x})<0$, which completes the proof of the lemma.

Proof of the theorem. The point \hat{x} is maximal in the compact convex set C if and only if 0 is maximal in the compact convex set $C-\{\hat{x}\}$; hence, without loss of generality we may take $\hat{x}=0$.

By lemmas 1 and 2, for every $p \gg 0$ in Y, the hypotheses of a minimax theorem of Ky Fan (cf. [3], p. 121) are satisfied for the function f defined on $C \times S_{p}$. Hence, there exist x^{p} in C and y^{p} in S_{p} such that, for all x in C and y in S_{p},

$$
\begin{equation*}
y\left(x^{p}\right) \geq y^{p}\left(x^{p}\right) \geq y^{p}(x) \tag{2.7}
\end{equation*}
$$

In particular, since 0 is in C,

$$
\begin{equation*}
y^{p}\left(x^{p}\right) \geq 0 . \tag{2.8}
\end{equation*}
$$

Let D be the set of all $p \gg 0$ in Y. The family $\mathfrak{H} \equiv\left\{\left(x^{p}, y^{p}\right): p \in D\right\}$ is a net if D is directed by \leq. It was noted in the proof of lemma 2 that S is compact; hence, \mathfrak{H} has a cluster point, say (\bar{x}, \hat{y}), in $C \times S$, and a subnet, say \mathfrak{M}, of \mathfrak{H} converges to (\bar{x}, \hat{y}). Note that for every $\left(x^{p}, y^{p}\right)$ in \mathfrak{T}, inequality (2.7) implies that x^{p} maximizes $y^{p}(x)$ on C, and therefore (since $y^{p} \gg 0$), x^{p} is maximal in C.

I now show that $\bar{x}=0$. For every y in S^{+}and p in Y such that $0 \ll p \leq y$, we have y in S_{p}, and hence, by (2.7) and (2.8), $y\left(x^{p}\right) \geq 0$; hence, by continuity, $y(\bar{x}) \geq 0$. In other words, for every y in $S^{+}, y(\bar{x}) \geq 0$. It follows by lemma 3 that $\bar{x} \geq 0$. Since 0 is maximal in $C, \bar{x}=0$.

To complete the proof, it suffices to show that the maximum of $\hat{y}(x)$ on C is 0 . From (2.7), for every $p \gg 0$ in Y and every x in C,

$$
\begin{equation*}
f\left[\left(x-x^{p}\right), y^{p}\right] \leq 0 \tag{2.9}
\end{equation*}
$$

Hence, by the continuity of f (lemma 1), $f(x, \hat{y}) \leq 0$.
Every continuous linear function y on X can be represented as an integral with respect to a finitely additive, finite, measure on the integers. In particular, it can be represented in the form

$$
\begin{equation*}
y(x)=\sum_{i<\infty} y_{i} x_{i}+y_{\infty}(x), \tag{2.10}
\end{equation*}
$$

where $\sum_{i<\infty}\left|y_{i}\right|<\infty$, and y_{∞} is a continuous linear function such that $y_{\infty}(x)=0$ for every x with only a finite number of nonzero coordinates. From this representation, it is clear that $y \gg 0$ if and only if, in (2.10), $y_{i}>0$ for every $i<\infty$.

It is an open question whether the theorem can be sharpened by replacing the set S^{+}by the set of continuous linear functions of the form (2.10) with $y \gg 0$, $y_{\infty}=0$, and $\sum_{i<\infty} y_{i}=1$. It is also not known whether the condition that C be compact can be dispensed with.

REFERENCES

[1] K. J. Arrow, E. W. Barankin, and D. Blackwell, "Admissible points of convex sets," Contributions to the Theory of Games, Vol. II, edited by Kuhn and Tucker, Princeton, Princeton University Press (1953), pp. 87-92.
[2] K. J. Arrow, L. Hurwicz, and H. Uzawa, Studies in Linear and Non-Linear Programming, Stanford, Stanford University Press, 1958.
[3] Ky Fan, Convex Sets and Their Applications, Argonne National Laboratory, Applied Mathematics Division, Summer Lectures (mimeographed), 1959.
[4] T. C. Koopmans, Three Essays on the State of Economic Science, New York, McGraw-Hill, 1957.

