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1. Introduction

The author previously treated the problem of classification in discrete cases,
employing the notion of distance [1]. The purpose of this paper is to treat that
problem for multivariate Gaussian cases from the same point of view.
Now, the classification problem is formulated as follows. Let {co1} be a class

of sets of distributions, and let X be a random variable under consideration.
Then the problem is to decide which co, is considered to contain the distribution
of X. We, of course, assume here that w, and w,, have no common distributions
when v P ,u. Further, for efficient decision making we assume that for a suitable
distance d(., *) in the space of distributions concerned, we have d(cov, W,r) > a
(> 0), (' X ,). In some cases, when d(,w, w,) = 0, we can represent each of
those co, by a single distribution F, so that d(F1, F,) > 0. For such F1, we can
consider the averaged distribution of w, by an adequate distribution over co,.
When the distributions concerned are all known, the decision rule for the

above problem runs as follows. Let S. be an 'empirical' distribution based on
n observations on X. We compare the magnitudes of d(S, c,,), and take the set
which minimizes d(Sn, Xv,,) as the set which contains the distribution. Then the
problem is to evaluate the success rate or error rate of this procedure. In this
paper, however, we shall treat the case where the distributions concerned are
unknown. When the distributions concerned are unknown, we have to estimate
them from observations. For that, the number of distributions concerned is
required to be finite. Therefore, we assume that each w, consists of a single
distribution F, and the number of F, is finite.

In the present paper, we do not explicitly take into account a priori prob-
abilities and costs of misclassification. However, our procedure will also apply
with a slight modification to the case where they need to be considered.

2. Decision rule based on distance

Let X be the random variable under consideration, and S. an 'empirical'
distribution based on n observations on X. Suppose that X has one of F1, * * *, Ft
as its distribution. Let S,,,n denote the 'empirical' distribution based on a sample
of n, from F, which has the same form as Sn. Then we consider d(Sn, S,,,) and
take F,, when S,,,,,, minimizes d(Sn, S,,,,,).
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Since the case of a finite number of distributions can reduce to the case where
the number of distributions concerned is 2, we shall confine our consideration
to this case.

Let F1, F2 be the distributions concerned, and let S', S," be the 'empirical'
distributions determined by observations on F1 and F2, respectively. Then the
decision rule for this case is the following:

(i) when d(S., S') < d(Sn, S'"), we decide on F1;
and

(ii) when d(Sn, S') > d(Sn, S'"), we decide on F2.
(iii) For the case d(Sn, S') = d(Sn, S'"), we determine in advance to take

either of F1, F2, say F1.
The success rate is given by

(1) P(d(S., Sr) < d(Sn, S.)IF1),
where "IF" in the parentheses means "under the condition that X has F," and
(2) P(d(Sx, S') > d(Sn, S'")IF2).
Now, when d(-, -) satisfies the triangle axiom, we obtain

(3) d(Sn, S') < d(Sn, F1) + d(S, F1),
(4) d(Sn, Ss") 2 d(F1, F2) - d(F1, S.) - d(F2, S)
and

(5) d(S., S,") - d(S., S') 2 d(Fl, F2) - 2d(S,,, F1) - d(Fl, S') - d(F2, S$").
Therefore, when d(Fl, F2) 2 6 (> 0), we have
(6) d(Sn, St") - d(S, S') 2 a - 2d(S., F1) - d(Fl, S') - d(F2, S,"),
and further, when 2d(Sn, F1) + d(Fl, S') + d(F2, S,") < 6 we have d(Sn, S,) <
d(Sn, S,"). As a result we obtain

(7) P(d(Sn, Sr) < d(S., S"/) IF,)
2 P(2d(S., F1) + d(F,, S') + d(F2, Ss") < 61F1)

2P(d(S., F0) < 4,d(Fl, Sr') < 4 d(F2, Ss'), 4| )

= P (d(Sn, F1) < F1) * P (d(F1, Sr) < ) PP (d(F2, Ss') <

Thus, for evaluation of the success rate it is sufficient to know about

(8) P (d(S, F) < F).

3. Distance and 'test' statistics

Let F1, F2 be distributions defined in space R, and let p1(x), p2(x) be their
density functions with respect to a measure m in R. Then the distance between
distributions which we employ here is
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(9) d(Fl, F2) = [JR (NV p2(X))2 dm]".
This distance satisfies the metric space axioms. When we define

(10) p(Fl, F2) = JR Vp,(X) Vp2(x) dm,
we have
(11) d2(F,, F2) = 2(1 - p(Fl, F2)).
The quantity p(., *) expresses the closeness between distributions, and we can
use p(., *) in place of d(., *).
Now, let us turn to the multivariate Gaussian case.
Let R be a k-dimensional space, and let Fl, F2 be k-dimensional Gaussian

distributions with density functions

(12) pl(x) = Aj"2 exp [-2(A(x - a), (x - a))],(27r)k/2 2

(13) P2(X) = RI"112 exp [-l(B(x - b), (x -b))],(2ir)kI2

where A, B are positive-definite matrices of degree k, and x, a, b are k-dimensional
(column) vectors. Then we obtain
(14)

p(Fl, F2) = -(A+B)Il2 exp [-4{-((A + B)'- (Aa + Bb), (Aa + Bb))
+ (Aa, a) + (Bb, b)}]

(see [2]). When A = B,

(15) p(Fl, F2) = exp [-s(A(a - b), (a -b))].
When a = b,
(16) p(Fl, F2) = IABI"4Il(A + B)11"2

Let XI, X2, * , X,, be n (> 2) observations on a random variable X with
a k-dimensional Gaussian distribution. Define

(17) n Xi
nl i=,

(18)~~ ~ 1 n(18) V =n- (Xi - X)(Xi -X)'
and let Sn be the k-dimensional Gaussian distribution with mean X and covar-
iance matrix V, that is, Sn = N(X, V). Set U = V-1. Similarly, concerning F,
and F2, let

(19) = N(Y(,), V(,)), U(,) = V-,

(20) S.= N(Y(2), V(2)), U(2) = (2)-
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Then we have

(21) p(S., Sr'

2(U + U(l))l/2 exp [- - ((U + U(l))- (UX + U()X()),
(UX + U(()X(=) + (UX, X) + (U(S)X(1), X(1)},

(22) p(S.,IS")= (U -(l))IlI2exp [-4{-((U + U(2))-(UX + U(2).(2D,

(UX + U(2)X(2))) + (UX, X) + (U(2)X(2), X(2,)}].
Using these statistics we can make a decision; that is, when p(S, S') > p(Sn, S,"),
we decide that X has F1, and when p(S., S') < p(SnX, S"), we decide that X
has F2. When it is known in advance that A = B, we consider

(23) p1(S., S,) = exp [-S(U(X - X(), (X -

(24) p1(S., S.,) = exp [--j(U(X -X(2)), (X-X(2)))]
for the case where A (= B) is unknown, and

(25) p2(S., Sr) = exp [-(A(X -X()), (X-X(1)))],
(26) P2(S., SS') = exp [-w(A(X - X(2)), (X -X(2)))]
for the case where A (= B) is known.
When the problem is concerned only with the covariance matrix, we consider

(27) P3(Sn, Sr) = jl(U + U 1/2

(28) P3(S-, S-) = 12(U + U(2))1/2
For instance, when

(29) UU(1)114 > UU(2) l/4 X
Il(U 4- U(l))11/2 - ~( I ()11/2

we decide that X has F1, and when

(uu)IU(l1"4/ UU(2I"/4
12(U + U(l))l1/2< 112(U + U(2))l/2'

we decide that X has F2. (For the case where these two statistics are equal, we
can, of course, determine in advance to take F2.)
As to the success rate, we obtain

(31)

P(p(S., S') > p(S., S"')IFF) 2 P (p(S., F,) > 15 K)

X P (P(S, F) > 1 P (p(S F2) > 116
and from this relation we can get an evaluation of the success rate, when we
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have the value of P(p(F, S.) > 8iF). Thus the next problem is to evaluate
P(p(F, S,) > 61F) (8 < 1).
Assume that X is distributed according to N(a, 1). First, concerning pi(F, Sn),

P2(F, Sn), we have

(32) -8n log pi(F, Sn) = n(V-'(X - a), (X- a)),
(33) -8n log P2(F, SO) = n(2-1(X- a), (X- a)),
and, as is well known, the right-hand sides have a noncentral F and a chi-square
distribution, and we have no problem here.

Concerning p3(F, Sn), we have

(34) pa(F, S,,) 1A;-1+U)1114(') 12 (2;-1 + U)T1/
and

(35) P(p3(F, S.) > ) 2 [P ( 41+ Z)2 6)]
where Z is a random variable such that nZ has the chi-square distribution with
n degrees of freedom (see [2]). Therefore, for given positive a and e (< 1), there
exists an integer no such that P(p3(F, Sn) > 8) 2 1 - e uniformly in F for
n > nO.
Now we will present the general case. Let 61, 62 be positive numbers such that

a = 81 exp [- (1/4)82], 61 < 1. Then we get
(36) P(p(F, SO) > 6)

> p ( 12 -W-111/4 > 61) P(0(1-'(X -a), (X -a)) < 252)
where

n i=lXl 0Xii

(37) W= i=

(38) 3=2_ +-4

(see [2]). By taking 81 (accordingly 62) so that the right-hand side becomes
maximum, we can get an evaluation (from below) of P(p(F, Sn) > 81F). When
we want to have P(p(F, Sn) > 8) > 1 - e, let 1- = ala2, a,, a2 > 0 and take
n large so that

(39) P ( 11 1W-111l/4 > 61) 2 a,,
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4. Classification by a linear function of vector components

In this section we consider the classification problem by a linear function of
components of a random vector.

Let N(a(l), 21), N(a(2), 22) be k-dimensional Gaussian distributions, and let
X = (X1,i , Xk) be a k-dimensional random vector. The problem is to decide
which one of N(a(W), 24), N(a(2), 22) is the distribution of X. For this problem
we consider a linear function of the components of X of the form (c, X) =

clXj + * * * + ctXk, where c is a constant vector (s 0). The decision procedure
is as follows. Let XM, X(2) be samples from N(a(l), 21), N(a(2), Z2), and let
Fl, F2c be the distributions of (c, X(1)) and (c, X(2)). Further, let E1, E2 be
optimal regions (on the real line) for classifying an observation from Fl, or F2,.
(For instance, E1, E2 can be defined by the probability ratio rule.) Then, when
(c, X) lies in E1, we decide that X has N(a(l), 21), and when (c, X) lies in E2,
we decide that X has N(a(2), Z2). Therefore, for reducing the probability of
misclassification, it is necessary to find an adequate c.
Now, we have

E(c, X(1)) = (c, a(l)),

(41) V(C, X(1)) = (c, siC),
E(c, X(2)) = (c, a(2)),

V(c, X(2)) = (c, 22c),
and
(42) [2(c,,, F2,,) = F 2(c, ZC)l/2(c, 22c)1/2 1"2 F

1 (c, a)- a(2))21
L(C, 7siC) + (C, 712C) I ex L4 (c, (2; + 2Z2)C)J

Therefore, from our standpoint, we should choose a c that minimizes p(Flc, F2,)
when a('), a , 2l, 22 are known. When a('), a , 24, 22 are unknown, we use in
place of them their estimates obtained from samples.
For example, when it is known beforehand that 2, = Z2, we consider

(43) (c, -2)
(c, zic)

and determine c so as to maximize this value. (This is a familiar procedure in
multivariate analysis.)
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