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1. Introduction

The binomial probability function

(1.1) b(k; n, p) = () pk(l - p)-k, k = O,1,** n,

=0, k= n + 1,

can be approximated by the Poisson probability function

(1.2) p(k; ) el P) k = 0, 1,

for X = np if n is sufficiently large relative to X. Correspondingly, the binomial
cumulative distribution function

k
(1.3) B(k;n, p) = , b(j;n, p), k = 0, 1,

j=O

is approximated by the Poisson cumulative distribution function
k

(1.4) P(k; X) = E p(j; X), k = 0, 1,
i-o

for X = np. In this paper it is shown that the error of approximation of the
binomial cumulative distribution function P(k; np) - B(k; n, p) is positive if
k < np - np/(n + 1) and is negative if np < k. In fact, B(k; n, X/n) is mono-
tonically increasing for all n (2 X) if k < X - 1 and for all n > k/(X - k) if
X - 1 < k < X, and is monotonically decreasing for all n (2 k) if X < k. Thus
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for most practical purposes the Poisson approximation overestimates tail prob-
abilities, and the margin of overestimation decreases with n.
The probability function b(k; n, X/n) increases with n [to p(k; X)] if k < X +
-(X + 4)1/2 or if X + I + (X + 1)1/2 < k. These facts imply that for given n

and X P(k; X) - B(k; n, X/n) increases with respect to k, to X + 2- ( + 4)1/2
and decreases with respect to k from X + a + (X + 4)1/2.
When the Poisson distribution is used to approximate the binomial distribu-

tion for determining significance levels, in nearly all cases the actual significance
level is less than the nominal significance level given by the Poisson, and the
probability of Type I error is overstated. Similarly, the actual confidence level
of confidence limits based on the Poisson approximation is greater than the
nominal level. Section 4 gives precise statements of these properties.

In section 5 another approach is developed to the monotonicity of B(k; n, X/n)
and b(k; n, X/n). Although the results are not as sharp as those in sections 2
and 3, the methods are interesting.
Throughout the paper we assume X > 0 and n > X (or 1 > X/(n - 1) when

used as a binomial parameter).

2. Inequalities among cumulative distribution functions

2.1. A general inequality. In this section we show that B(k; n, X/n) increases
with n to P(k; X) if k is small relative to X and decreases to P(k; X) if k is large.
For this purpose the following theorem of Hoeffding will be needed.
THEOREM (Hoeffding [1]). Let F(k) be the probability of not more than k suc-

cesses in n independent trials where the i-th trial has probability pi of success. Let
= pI + p2 + **-+ Pn. Then

(2.1) B(k; n, X/n) > F(k), k < X -1,

B(k; n, X/n) < F(k), k > x.

Equality holds only if pi = ... = pn = X/n.
It is possible to obtain from this the following result.
THEOREM 2.1.

(2.2) B(k; n, X/n) > B(k; n-1, X/(n-1)), k < X-1,

B(k; n, X/n) < B(k; n - 1, X/(n -1)), k > X.

PROOF. If we choose pi = 0, P2 = ... = pn = X/(n - 1), then F(k) =
B(k; n - 1, X/(n - 1)), and the result follows from Hoeffding's theorem.
COROLLARY 2.1.

(2.3) P(k; X) > B(k; n,X/n), k < X-1,

P(k; X) < B(k; n, X/n), k > X.

Alternatively, we may take pi = 1, P2 = .*. = pn (X - 1)/(n - 1), in
which case F(k) = B(k- 1; n - 1, (X - 1)/(n - 1)). Hence we have the next
theorem.



POISSON PROBABILITIES 3

THEOREM 2.2.

(2.4) B(k; n, X/n) > B(k- 1; n- 1, (X- 1)/(n- 1)), k < X- 1,
B(k; n, X/n) < B(k-1; n-1, (X-1)/(n-1)), k >X.

The limits of (2.4) as n -a ) give the following corollary.
COROLLARY 2.2.

(2.5) P(k; X) 2 P(k-1;X-1), k<X-1,
P(k;X) < P(k - 1;X -1), k >X.

This corollary will be used in section 4. If X increases by steps of 1, corollary 2.2
indicates that the probabilities in the tails [0, X - a] and [X + c, oo are increas-
ing with X if a > 1 andc > 1.

2.2. Monotonicity near the mean. If X is an integer, theorem 2.1 includes all
values of k. If X is not an integer, what happens at the value of k which is between
X - 1 and X? We shall show that B(k; n, X/n) increases with n if n is sufficiently
large.
THEOREM 2.3.

(2.6) B(k; n, X/n) > B(k; n-1, X/(n-1)), k < X, n >X/(X -k),
B(k; n, X/n) < B(k; n - 1, X/(n -1)), k > X.

PROOF. The second inequality is part of theorem 2.1. The first inequality is
stated for nk/(n - 1) < X. It will follow from that inequality for nk/(n - 1) <
X < (n - 1)k/(n - 2) [lemma 2.2] and the following lemma.
LEMMA 2.1. The function D(k; n,X) = B(k; n, X/n) - B(k; n - 1, X/(n -1))

has at most one sign change from negative to positive in the interval 0 < X < n - 1.
PROOF. The case k = n-1 is true since B(n - 1; n -1, X/(n -1)) 1.

Hence we consider only k < n - 1. Since D(k; n, X) is 0 for X = 0 and positive
for X = n - 1, it suffices to show that the derivative has at most two sign
changes, from negative to positive to negative. Now

d(2.7) d D(k; n, X) = b(k; n - 2, X/(n - 1)) - b(k; n - 1, X/n),

(2.8) b(k; n - 2, X/(n -1)) _ (n-i- k)(1 + 1/(n - 1))n-1(2.8) b(k; n - 1, X/n) (n - 1 - X)(1 + 1/(n - 1 -))n-lk
Then (2.8) is increasing for X < k + 1 and decreasing for X > k + 1. Hence
(2.7) has the desired sign change property and the lemma is proved.
LEMMA 2.2. If nk/(n - 1) S X < (n - 1)k/(n - 2), then

(2.9) B(k; n, X/n) > B(k; n - 1, X/(n - 1)).

PROOF. In n independent trials with n - 1 of the probabilities of success
equal to X/n and the remaining probability equal to p, the probability of at
most k successes is

(2.10) pB(k - 1; n - 1, X/n) + (1 - p)B(k; n - 1, X/n).
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This is a decreasing function of p and is equal to B(k; n, X/n) when p = X/n.
The value of p which makes (2.10) equal to B(k; n - 1, X/(n - 1)) is

(2.11) * B(k, n- 1, X/n) -B(k, n-- 1, X/(n- 1))
b(k, n - 1, X/n)

n-i- k (X/(n~~1) Uk(1 - U)nl2-k du.

(X/n)k(1 - X/n) -1k J/,
It suffices, then, to show that under the hypothesis p* > X/n. If
(2.12) X < (n - 1)k/(n - 2),
then the integrand in (2.11) is increasing in u over the range of integration.
Hence for X < (n - 1)k/(n - 2)
(2.13) >(n - 1 - k)(X/(n - 1)- X/n)(/n)k(1 - X/n)n-2k

(X/n)k(l - X/n)n-1-k
(n - 1 - k)X

(n - 1)(n-
which is at least X/n if

(2.14) X > nk/(n - 1),
which proves the lemma.
Theorem 2.2 follows from lemma 2.2, because lemma 2.1 indicates that if

(2.9) holds for a given value of X, it holds for all larger values.
COROLLARY 2.3.

(2.15) P(k; X) > B(k; n,X/n), k < X, n > k/(X-k),
P(k; X) < B(k; n, X/n), k > X.

2.3. Special cases. Lemma 2.1 implies that for each n there is a number Xn
such that B(k; n + 1, X/(n + 1)) - B(k; n, X/n) is negative if X < Xn and is
positive if X> XA, and theorem 2.3 indicates that k < Xn < k + k/n. There is
no simple expression for Xn. Is it true that Xn - k - k/n? The answer is no, as
can be seen in the case k = 1. The first derivative of B(1; n, X/n) with respect
to n approaches 0 as n -+ o, and the second derivative is negative for all n> X
if X > (4)1/2, while if X < (4)1/2 it is negative if

(2.16) n > [X2 + X(4 - 3X2)1/2/[2(\2-1)].
Equivalently, the second derivative is negative if X > n/(n2 - n + 1)1/2 1 +
1/(2n). Thus for k = 1, Xn < n/(n2 - n + 1)1/2.
For the case k = n - 1, we can explicitly evaluate X.. We have Xn = n + 2 +

1/n - (1 + 1/n)"+l so that X,, - k approaches 3 - e - .282 as n oo. Thus
Xn is smaller than n - 1 + (n - 1)/n, as given by our general result. In par-
ticular, if k = 1 and n = 2, Xn = -, which is smaller than 2/x/3 as given by the
preceding paragraph.
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3. Inequalities among probability functions

Let
(3.1) r(k; n) = b(k; n, X/n)/b(k; n - 1, X/(n - 1)),

(3.2) d(k; n) = b(k; n, X/n) - b(k; n - 1, X/(n - 1)).
Then
(3.3) r(k; n)/r(k - 1; n) = (n + 1 - k)(n - 1 - )/[(n -k)(n -)],
which is less or greater than one according to whether k is less or greater than
X + 1. Since d(O; n) > 0 (by theorem 2.3), d(n; n) > 0, and k=.O d(k; n) = 0,
we have the following proposition.

PROPOSITION 3.1. For suitable nonnegative integers an and cn, depending on X,

(3.4) d(k; n) > O, O< k < an or Cn < k < n,

d(k; n) < 0, an < k < Cn,
and

max [B(k; n, X/n) - B(k; n - 1, X/(n - 1))],
(3.5)

~ O<k<n

(3.5) min [B(k; n, X/n) - B(k; n - 1, X/(n - 1))]
O<k <n

occur at k = an and c., respectively.
The following theorem gives a lower bound for an and an upper bound for cn.
THEOREM 3.1. If 0 < k <X+ I - (X+ 4)1/2 or if X + + (X + 4)1/2 <

k < n, then

(3.6a) b(k; n, X/n) > b(k; n - 1, X/(n - 1));
if A + 1-(X + 4)1/2 < k < X + - + (A + 4)1/2 and n is sufficiently large,

(3.6b) b(k; n, X/n) < b(k; n - 1, X/(n - 1)).
PROOF. The conditions on k in the first part of the theorem are equivalent

to X < k -k2 and X > k + kI 2. Since
(3.7) r(k; n) = b(k; n, X/n)/b(k; n - 1, X/(n - 1))
decreases for X < k and increases for X > k, it suffices to consider b(k; n, X/n)
at only the values X = k I1kc 2. We prove (3.6a) by showing that log b(k; n, X/n)
is an increasing function of n at these two values of X. Now

(3.8) log b(k; n, X/n) - log Xk + log k!
k-1

= Y log (1 -j/n) + (n-k) log (1 - X/n)
j=1

k-1 x

= - , (j/n)"/r - (n - k) : (X/n)r/r
j-1 r-1 r=1

I k-1
= -X - F (1/n)r' jrlr + Xr+l/(r + 1) - kXr/r].

r=[IDIr/
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Hence the first part of the theorem is proved if for X = k +t kl2, each bracketed
expression is nonnegative. (Note that, if k = 0 or 1, the sums on j should be
taken to be zero, and we see immediately that in these cases the theorem is true.)

For r = 1 the bracketed expression vanishes. In the general term, we replace
the sum by a more manageable expression as follows: by convexity of zr,

rz+1
(3.9) i zr dz < I [xr + (x + 1)r].2~~~~~
Hence,

(3.10) ~kI(k- l)r± + (k - 1)I = zr dz + I (k-1)r

k-2 XI+1
:, fx+1 zrdz + (k - 1)r

k-2

[xr + (x + 1)r] + 2(k 1)r
X=O

k-1
= E jr.

j=O

Thus, each bracketed expression in (3.8) is at least

(3.11) [(k - 1)r+l + 2(r + i)(k - 1)r + rXr+i - (r + 1)kXr]/[r(r + 1)].
Setting X = k + kV2 and letting u = k1/2, v = k-112 < 1, we can write (3.11) as

(3.12) [(U + 1)r+l (U - 1)r+l + I (r + 1) (u + 1)r(U - 1)r + rur+i(u + 1)
- (r + 1)ur±+(u + 1)r]/[r(r + 1)]

= (u + 1)r{(u - 1)r[U2 + (r - 1)] - Ur(U2 - ru)}/[r(r + 1)]
= (u + 1)rur+2{(1- v)r[l + '(r - 1)v2] - (1 - rv)}/[r(r + 1)]
> 0,

since (1 -v)r > 1 - rv for v < 1, r > 1. A similar argument establishes the
result at X = k - k2, which completes the proof of the first part of the the-
orem. The second part of the theorem follows since the coefficient of 1/n in
(3.8) is positive for k - k" < X < k + k"2.
COROLLARY 3.1. If m > n and if O< k < X + (X+ ')2 or X + 2 +

(X + 1)1/2 < k < m, then

(3.13) p(k; X) > b(k; m, X/m) > b(k; n, X/n).
Hence,

(3.14) max [P(k; X) - B(k; n, X/n)]
O<k <X+2- (X+ 1)lI2

occurs at the largest integer which is not greater than X + A-(X + 1)1/2, and

(3.15) min [P(k; X) - B(k; n, X/n)]
aX+ts in + (X ) )<k.<n

occurs at the smallest integer which is at least X + 2 + (Xt + 1)1/2.
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4. Applications to statistical inference
4.1. Testing hypotheses. Suppose n independent trials are made, each trial

with probability p of success. Consider testing the null hypothesis p = po,
where po is specified. Against alternatives p < po a (uniformly most powerful)
nonrandomized test is a rule to reject the null hypothesis if the observed number
of successes is less than or equal to an integer k. The significance level of the
test is B(k; n, po). It may be approximated by P(k; npo). If k < npo - 1, then
by corollary 2.1, B(k; n, po) < P(k; npo). (Corollary 2.3 allows us to raise the
bound on k to npo - npo/(n + 1), but we shall use here the simpler bound.)
The procedure is conservative in the sense that the actual significance level
(defined by the binomial distribution) is less than the nominal significance level
(given by the Poisson distribution). The condition k < npo - 1, which can be
verified by the statistician in defining the test procedure, enables him to say
that the probability of rejecting the null hypothesis when it is true is less than
the approximating probability.

Against alternatives p > po a (uniformly most powerful) nonrandomized test
consists in rejecting the null hypothesis if the number of successes is greater
than or equal to an integer E. The significance level of the test is
(4.1) 1- B(E- 1; n, po),
which may be approximated by 1 - P(k - 1; npo). If npo < E - 1, then by
corollary 2.1, 1 - B(E - 1; n, po) < 1 - P(k - 1; npo) and the procedure is
conservative. A nonrandomized test against two-sided alternatives p $ po con-
sists in rejecting the null hypothesis if the number of successes is less than or
equal to k or greater than or equal to E. The significance level B(k; n, po) + 1 -
B(E-1; n, po) may be approximated by P(k; npo) + 1 - P( - 1; npo). If
k + 1 < npo < E- 1, the procedure is conservative.
A (uniformly most powerful) randomized test of the null hypothesis p = po

against alternatives p < po consists of a rule to reject the null hypothesis if
the observed number of successes is less than k and to reject the null hypothesis
with probability 7r if the number of successes is k. The significance level
is rB(k; n; po) + (1 - r)B(k- 1; n, po), which may be approximated by
ij-P(k; npo) + (1 - ir)P(k - 1; npo). The Poisson approximation overestimates
the significance level if k < npo - 1, since both P(k; npo) and P(k - 1; npo)
overestimate the corresponding binomial probabilities. A (uniformly most power-
ful) randomized test against alternatives p > po consists of a rule to reject the
null hypothesis if the observed number of successes is greater than E and to
reject the null hypothesis with probability * if the number of successes is E. The
significance level is 1 - B(E- 1; n, po) - (1 - r)B(k; n, po), which may be
approximated by 1 - rP(E - 1; npo) - (1, - r)P(E; npo). The approximation
is an overestimate if npO < E - 1. A two-sided randomized test consists in
rejecting the null hypothesis if the number of successes is less than k or greater
than E, rejecting the null hypothesis with probability ir if the number of successes
is k and rejecting the null hypothesis with probability * if the number of successes
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is k-. The significance level, rB(k; n, po) + (1 - r)B( -1; n, po) + 1-
rB(k- 1; n, po) - (1 -ir)B(1; n, po) is overestimated by ,,P(k; npo) +
(1-7r)P(- 1; npo) + 1- -rP(E-; npo) -(1-ir)P(E; npo) if Lc + 1 <
npo < E-1.
Some criteria for satisfying conditions for overestimation by the approxima-

tion will be derived from the following theorems.
THEoREM 4.1. If P(t; X) < P(h; m), then m + t-hh< X, for t= h, h + 1,

***, m=h+1,h+2,***, h=O,1,***.
PROOF. P(4; X) < P(h; m) implies P(4; X) < P(t; 4 + m - h) because

P(h; m) < P(4; 4 + m - h) by corollary 2.2, and P(4; X) < P(4; t + m - h)
implies t + m - h < X because P(4; v) is a decreasing function of v. [In fact
dP(4; v)/dv = -p(4; v).]
Theorem 4.1 with t = k, h = 0, and m = 1 states that if P(k; X) < P(0; 1) =

e-1 - .3679, then k < X - 1, which implies that B(k; n, X/n) is increasing in n
to P(k; X). The theorem with 4 = k - 1, h = 0, and m = 2 states that if
P(k - 1; X) < P(O, 2) = e-2 - .1353 then k < X - 1, which implies that
B(k; n, X/n) as well as B(k - 1; n, X/n) are increasing in n. Hence

(4.2) EP(k;npo) + (1 - )P(- 1;npo) < P(0;2)
implies P(k- 1; npo) < P(O; 2), which implies
(4.3) LrB(k; n, po) + (1-7r)B(k - 1;n, po)

<irP(k; npo) + (1 - 7)P(k; npo).
THEOREM 4.2. If P(h; m) < P(4; X), then X < m + 4-h, for t = h, h + 1,

*** , h = m, m + 1,***, m =0, 1,***.
PROOF. P(h; m) < P(4; X) implies P(t; t + m - h) < P(4; X) because

P(4; 4 + m - h) < P(h; m) by corollary 2.2, and P(t; 4 + m - h) < P(4; X)
implies X < m + t - h because P(4; v) is a decreasing function of v.
Theorem 4.2 with t = k - 1 and h = m = 1 states that if P(k- 1; X) >

P(1; 1) = 2e1 - .7358, then X < k - 1; hence 1 - B(k - 1; n, X/n) is increas-
ing in n. In this case, k = 2, 3, * - - . The test which rejects the null hypothesis
on the basis of one or more successes (k= 1) is not covered; in fact,
1 - B(O; n, X/n) is decreasing in n. The theorem with 4 = k, h = 2, and m = 1
states that if P(k; X) 2 P(2; 1) = 5e-1/2 - .9197, then X < k - 1, which im-
plies that B(k - 1; n, X/n) as well as B(k; n, X/n) are decreasing in n. Hence

(4.4) 1 -*P(k(- 1; npo) - (1 - r)P(1(; npo) < 1 - P(2; 1) ' .0803
implies 1 - P(k; npo) < 1 - P(1; 2), which implies
(4.5) 1- rB( -1; n, po) - (1-ir)B(; n, po)

< 1 - irP( - 1; npo) - (1 -r)P() ; npo).
Since k = 2, 3, * here, the result does not cover tests for which k = 1 leads
to rejection, with or without randomization.
These properties apply also to two-sided tests. If the nominal significance

level is less than a given number, the nominal probability of rejection in each
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tail is less than that number, and we make the above deductions about X = npo.
Our conclusions can be simplified to the following rules:
RULE 1. The actual significance level of a nonrandomized test of the parameter

of a binomial distribution is less than the approximate significance level based on the
Poisson distribution if the approximate significance level is less than or equal to .26,
except for the test which accepts the null hypothesis for 0 success and rejects for every
positive number of successes.
RULE 2. The actual significance level of a randomized test of the parameter of

a binomial distribution is less than the approximate significance level based on the
Poisson distribution if the approximate significance level is less than or equal to .08,
except possibly for tests which accept the null hypothesis with some positive prob-
ability for 0 success, reject the null hypothesis with some positive probability for
one success and always reject the null hypothesis for more than one success.
Rule 2 could possibly be improved, because for any particular #r (< 1), (4.5)

may hold without B(E- 1; n, X/n) decreasing in n. However, a study of condi-
tions for every #r would be very complicated; for example, lemma 2 of Samuels
[2] shows that if * = 2, then IB(k - 1; n, X/n) + IB(k; n, X/n) is decreasing
if X < [k(k - 1)]1/2(n - 1)/{[k(k - 1)]1/2 + [(n - k)(n - k - 1)]1/2}.
Rule 2 can be improved by omitting tests for which k- = 1 or 2. Then the

Poisson probability exceeds the binomial probability if the Poisson probability
is at least P(0; 2) = e-2 -.1353 from theorem 4.1; application of theorem 4.2
to randomized tests for k >2 3 gives the criterion of 1 - P(3; 2) = 1 -
19e-2/3 -.1429.

4.2. Confidence limits. The upper confidence limit p for the parameter p of
a binomial distribution based on a sample of k successes in n independent trials
at confidence level 1 - e is the solution in p of B(k; n, p) = e. The upper confi-
dence limit X for the parameter X of a Poisson distribution based on k occurrences
at confidence level 1 - e is the solution in X of P(k; X) = E. An approximation
to p is X/n. If k + 1 < X, then B(k; n, X/n) < P(k, X); since B(k; n, p) decreases
in p [dB((k; n, p)/dp = -b(k; n - 1, p)], p < X/n. Thus X/n is a conservative
upper confidence limit for p in the sense that the actual confidence level
1 - B(k; n, X/n) is greater than the nominal confidence level 1 - P(k; 1) =
1 - E. This is true if 1 - e > 1 - e-1 (approximately .6321). In practice, if
X/n > 1, the upper limit for p is taken as one.
The lower confidence limit p for the parameter p of a binomial distribution

based on k successes in n trials at confidence level 1 -a is the solution in p of
1 - B(k - 1; n, p) = 5. The lower confidence limit X of a Poisson distribution
based on k occurrences at confidence level 1 - S is the solution in X of
1 - P(k - 1; X) = S. Then X/n is an approximation to p. If X < k- 1, then
P(k - 1; X) < B(k - 1; n, X/n) and ./n < . Thus \/n is conservative since
B(k- 1; n, X/n) > P(k - 1; \) = 1 - S. This is true if 1 - 2> 2e-1 (approx-
imately .7358). The conservative procedure then is p = 0 if k = 0, E = 1 -
(1 - 5)1/n if k = 1 (the solution of B(0; n, p) = (1 - p)n = 1-5), and p/n
if k > ].
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A confidence interval of confidence 1 - e -a is (p, p), where p and p are
defined above. An approximate procedure is to use (N/n, X/n), except that .v/n
is replaced by p if k = 1, and X/n is replaced by 1 if X/n > 1.
RULE 3. If the confidence level of the Poisson approximate confidence limits

(with p if k = 1) is at least .74, the actual confidence level is greater than the nominal
level.

5. An alternative approach to inequalities of sections 2 and 3

The following theorem supplements Hoeffding's Theorem stated in section 2.1
and yields a corollary which is stronger than theorem 2.1 but slightly weaker
than theorem 2.3.
THEOREM 5.1. If F(k) and X are defined as in section 2.1 with

(5.1) X > [(n - 1)/(n - 3)][k - 1/(n -k)],
and if pi < X/(n - 1), i = 1, * * *, n, then F(k) < B(k; n, X/n).

PROOF. The set of all vectors (pi, - - *, pn) which satisfy the hypothesis is
compact, and F(k) is a continuous function of p; hence, the supremum of F(k)
is attained. Suppose that the pi's are not all equal; let pi = minil...-,n pi and
P2 = maxi=1,. . ,n pi. Let f*(j) and F*(j) be, respectively, the probabilities of
j successes and of not more than j successes in trials 3 through n. Then

(5.2) F(k) = plp2F*(k - 2) + [p'(l -p2) + P2(1- pi)]F*(k - 1)
+ (1 - pl)(I -p2)F*(k)

= plp2[f*(k) - f*(k - 1)] - (pl + p2)f*(k) + F*(k).

Since Pi and P2 are each at most X/(n - 1), the sum of the remaining pi'S is at
least (n - 3)X/(n - 1). Theorem 2 of [2] states that, if the sum of these pi's
is greater than k - 1/(n - k), then f*(k) > f*(k - 1). Hence, if

(5.3) X > [(n - 1)/(n - 3)][k - 1/(n -k)],
we can increase F(k) by replacing Pi and P2 by (pl + P2)/2. Thus, under the
hypothesis, the supremum of F(k) is attained only when the pi's are all equal,
which gives the desired result.

If we take pi = 0, P2 = = = X/(n - 1), we have the following
corollary.
COROLLARY 5.1. If k < ), then B(k; n, X/n) > B(k; n - 1, X/(n - 1)) for

all n sufficiently large so that

(5.4) X > [(n - 1)/(n - 3)][k - 1/(n -k)]
Note that the right-hand side of (5.4) is greater than the right-hand side

of (2.14).
It is possible to obtain a result almost as good as theorem 3.1 by a method



POISSON PROBABILITIES 11

analogous to that used in proving theorem 2.1. We begin with a theorem of
Hoeffding [1] which is more general than that in section 2.1.
GENERAL THEOREM OF HOEFFDING. Let g(k) be any function of the number of

successes k in n independent trials, and let X be a number between 0 and n. Then
the maximum and minimum values of Eg among all choices of pi, * * *, pn with
Pi + * *- + Pn = X are attained for choices of the following form: r of the pi's
are 0, s of the pi's are one, and the remaining n - r - s of the pi's are equal to
(- s)/(n - r - s).

If g(j) is one for j < k and 0 for j > k, then Eg = F(k). Evaluation of Eg
for the possible values of r and s shows that if X < k + 1, then min Eg is not
obtained with s > 0, and if X < k, min Eg is not attained with r > 0. This gives
half of (2.2), and the other half is attained similarly.
We now take g(j) to be one if j = k, and 0 otherwise. Then Eg = f(k). We

prove the following theorem.
THEOREM 5.2. If X < k- 1 -k112 or X> k + 1 + k112, then

(5.5) max f(k) = b(k; n, X/n).
PI+ *+P.=X

PROOF. From the general theorem of Hoeffding, we need only consider those
choices of pi, * * *, pn with r of the pi's equal to 0, s of them equal to one and
the remaining n - r - s equal to (X - s)/(n - r - s). Let us call such choices
"candidates."
We shall show that if X satisfies the hypothesis, and if r > 0 or s > 0, then

there is another choice of the pi'S satisfying the constraint for which the prob-
ability of k successes is greater. To do this, we first note that

(5.6) f(k) = plp2[f*(k) - 2f*(k - 1) +f*(k - 2)]
+ (PI + P2)[f*(k) -f*(k - 1)] +f*(k),

where pi and P2 are the probabilities of success on any two specified trials, and
f*(k) is the probability of k successes in the remaining n - 2 trials. If pl < P2
and the coefficient of P1P2 is positive, then we can increase f(k) without altering
the sum pi + P2 by replacing pi and P2 by (pl + P2)/2.

It can be shown that
(5.7) b(k; n, p)-2b(k-1; n, p) + b(k-2; n, p)
is negative if and only if

(5.8) k - [k(n + 2 - k)/(n + 1)]1/2 < (n + 2)p
< k + [k(n + 2 - k)/(n + 1)]1/2,

and hence is positive if

(5.9) p < (k - 1 - kl2)/(n + 1) *or p > (k + kl/2)/(n + 1).
For a candidate with r > 0, we take pi = 0, P2 = (X - s)/(n - r - s), while

for a candidate with s > 0, we take p = (X - s)/(n - r - s), P2 = 1. Then
the coefficient of P1P2 is
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b(k - s;n - r - s - 1, (X -)/(n -r - s))
- 2b(k - s - 1;n - r - s - 1, (X - s)/(n - r - s))
+ b(k-s-2;n-r-s-1, (X-s)/(n-r-s)), if r> 0;

(5.10)
b(k -s + 1;n - r - s - 1, (X - s)/(n - r - s))

- 2b(k - s;n - r - s - (-s)/(n - r - s))
+ b(k-s-1;n-r-s-1, (X-s)/(n-r-s)), if s > 0.

From (5.9), the coefficient is positive and the theorem is proved.
Taking r = 1, s = 0, we have the following corollary.
COROLLARY 5.2. If X < k - 1 - kl2 or X > k + 1 + kll2, then b(k; n, X/n) >

b(k - 1;n - 1,X/(n -1)).
This, however, is weaker than theorem 3.1.
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