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1. Introduction

There are in nature several instances of charged particles with very high
energies, distributed over a wide range: cosmic rays, the electrons of the outer
Van Allen belt, and protons emitted by the sun in association with flares. The
origin of these particles has long presented a puzzle. In 1949, Enrico Fermi
pointed out that the motion of charged particles in a randomly changing mag-
netic field ought to lead, through Faraday's law of induction, to a gradual but
unlimited increase in their mean energy [1]. Fermi proposed this mechanism as
the source of cosmic rays, the random magnetic field being identified with the
field expected to exist in interstellar space, according to Alfven's ideas on
cosmical electrodynamics [2].

If one wishes to study quantitatively the problem of the motion of charged
particles in a random magnetic field, one is faced with the obvious difficulty
that the equations of motion are complicated and cannot be integrated. It is
therefore necessary to introduce certain simplifying assumptions. We shall begin
right away by listing the principal assumptions made in this paper, assumptions
which are nearly the same as those laid down by Fermi in his treatment of the
cosmic ray problem.

2. Outline of the problem

The motion of a particle of charge q and momentum p in a magnetic field B
is associated with a characteristic length 1 = 27rpc/Iq[B, which is the distance
traveled during one cyclotron period (c is the speed of light).
We shall adopt three postulates concerning the nature of the random magnetic

field and the charged particles moving in it.
POSTULATE 1. If L is a characteristic length, suitably deftned, associated with

the fluctuations of the magnetic field, then l/L << 1.
This assumption clearly breaks down for particles of sufficiently large momen-

tum, a restriction which should be kept in mind.
POSTULATE 2. The magnetic field is embedded in a plasma of infinite electrical

conductivity, whose hydrodynamical motion is described by a velocity field U, small
compared with the particle velocity v: U/v << 1.
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It may be pointed out here that U is related to the induced electric field E
by the magnetohydrodynarnic relation

-E - -B,C

which will be derived in section 3. Thus the particle motion, which is of course

influenced by E as well as B, is inevitably coupled to the plasma velocity. All
other interactions between plasma and particles will be neglected.

POSTULATE 3. The component v, of the particle velocity v nornal to the magnetic
field remains always small compared with c, that is v,/c << 1.
We shall see that this assumption appears to be essentially consistent with the

equations of motion.
Our procedure, suggested by the last postulate, will be to linearize these equa-

tions with respect to v,/c. We shall then be able to derive a simple linearized
equation of motion,

(2) ds =
ds

inl which 0 is a kinematic variable related to v by the relation 0 = tanh-1(v/c).
Here K is an auxiliary random field determined locally by the electromagnetic
field and its gradient, and s is the coordinate of the particle measured along its
trajectory.

It turns out that equation (2) is integrable, so that the incremeilt AO can be
calculated and a Fokker-Planck equation derived for the probability distribution
1/(0, S) of 0.

WNIhen the fields B and U are stationary random functions in both space and
time, we shall be able to prove, hy appealing to the fundamental equation of
magnctohydrodynamies,

OB
(3) a9t = curl (U X B),

that the Fokker-Plainek equation reduces to the simple form

(4) 0 = ' so > 0, constant.

Diffusioni equatioiis of this type, where the distance traveled ocCUrIs in place
of the time, play an important role in the theory of neutron diffusion in piles
where they are called "Fermi age equations," the distance traveled by the neu-
tron being known as its age.

3. The linearized equation of motion

In a frame of reference moving with the plasma velocity U, the electric current

density J may be written, according to Ohm's law, j = oE, where o- is the elec-
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trical conductivity. According to postulate 2, o is infinite and E must therefore
vanish. A Lorentz transformation to a frame of reference at rest then yields
exactly equation (1) for the electric field.
The force dp/dt experienced by the particle is

(5) d E cv XB),
the momentum and velocity being related relativistically according to the
expression

mv(6) - my

where m is the rest mass of the particle. The other equation of motion is of course
dr/dt = v, where r is the particle position vector.

It follows from (1) that E, B are mutually orthogonal,

(7) E B =.
From (5) and (7) we have therefore

(8) B.dt
The energy W of the particle increases at the rate dW/dt = dp/dt v. From (8)
it follows that v may here be replaced by v1, yielding

ddW dp-g
(9)di d

With the help of the relation p = Wv/c2, equation (9) may be written

(10) W

We shall now, as suggested by postulate 3, linearize this equation with respect
to v,/c. This may be done by inserting v= =bv,b B/B, into (10), which
becomes

dW db*C- = =I= V V.(11) ~~~~~~dt dt
We have

(12) db = clb + v * grad b.
dt at

Again inserting v =4dbv, we obtain finally



4 FOURTH BERKELEY SYMPOSIUM: CRAWFORD

(13) c2, t =+Wv (d -4: vb grad b) v.dt~ ~at/V.
The justification of postulate 3, which underlies the linearization procedure,

results from the following considerations.
In a frame of reference moving with the velocity U, the quantity p2/B is

known [3], with certain restrictions, to be an adiabatic invariant of the particle
motion to all orders in the small quantity 1lL. Even this restricted invariance
is not exact, however, as the corresponding power series in ilL does not converge
to a limit. Nevertheless, one has the impression that p2/B is effectively a "good"
constant and we shall assume that this is the case. Thus, if p,/mc << 1 is satisfied
at one instant, it will continue to be, provided the fluctuations of B are not
extraordinarily severe.
The inequality v1/c < p,/mc then guarantees that v_/c << 1 continues to hold.

This is the case however in a frame of reference moving with the local plasma

velocity U. To obtain v, in a stationary frame of reference we merely have to

add to v, the normal plasma velocity component U,. Since U/c << 1, the in-
equality v,/c << 1 holds also in the frame of reference at rest.

Returning to equation (13), we notice that the ratio of the first to the second
term in the parentheses is of the order of magnitude U/v. According to postulate
2, we may therefore neglect the first term and rewrite (13) in the simpler form

e dW -
(14) C2vdW = (b . grad b ) v,.

With the help of the usual relativistic relations between energy, momentum, and
velocity, this may be rewritten

(15) dt log p = b grad b v .

To facilitate the integration of (15) we may now utilize postulate 1. The time
taken for the particle to traverse the distance 1 is one cyclotron period T = I/v.
During this time, the increment of log p, according to (15), is of the order of

magnitude (v,/v)(ilL), which is negligible; furthermore b* grad b is essentially
constant over the distance 1. If we now proceed to average (15) over one cyclotron
period, we may therefore neglect not only the change in log p but also the change
in b * grad b. The averaged equation (15) may therefore be written

(16) d log = b * grad

where

(17) 2 1(t) T If IT I (t + T).

Now it may be shown [4], with the help of postulate 1, that v, is actually in-
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dependent of the particle velocity anid is equal to the so-called electric drift

velocity cE X B/B2, which, according to (1), is simply

(18) U1=c B2

Thus (16) becomes

(19) dt log p ( brad U,.

However, since b * grad b is orthogonal to B, we may write this simply

(20) dt log = (b * gradb) U.

Thus the right side of (20) depends, according to (18), only on the electro-
magnetic field and its gradient at the position of the particle.
By using the relativistic relation (6), and writing v = ds/dt, we may rewrite

(20) in the form
dO ~~U(21) d- = ( b grad b -* c K( r, t)O

where

(22) 0 = tanh-'

and s is the distance traveled by the particle.

4. The Fokker-Planck equation

To construct the Fokker-Planck equation for equation (21) we must compute
the mean value limits [5], [6]

*fi= lim A0= 0 - 0

(23) as-O As

f2= lim (2), As =s= - .
As-40 As

Here, the limit As -O 0 is to be understood with the qualification As/L >> 1.
We shall assume that U/v is sufficiently small that

(24) (U/v)(As/L) << 1.

This condition is somewhat stronger than is needed to satisfy the requirement
that (^A2)1/2 be small. However, it insures also that the time elapsed, -As/v, is

small compared with the characteristic time L/U with which the fields B and
U fluctuate. Thus the time dependence of K(r, t) may be neglected. Furthermore,
the particle trajectory which, in the linearized theory follows the equation
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(25) Ir = 4bds,

is determined entirely by the particular realizationi of the magnetic field and
the value of r at the instaiit to. In fact the trajectory lies on the magnetic "line

of force" going through ro. Thus, when we integrate (21), the increment

(26) AO = | ds K(r, t), t to,

depends only upon ro, to, and As [and on the sign in (25)].
If we now assume that B and U are stationary random functions [7] in both

r and t, and average over ro, to, and the sign, it follows that fi, f2 are constants.
Neglecting small quantities of order AS2, (A03), the probability distribution

P'(0, s) of the kinematic variable 0 then satisfies the Fokker-Planck equation

(27) d- 2f2 -fi .

We shall now prove that fi vanishes.

5. Calculation of fi
According to (26) we have

(28) (AO) = ( L.o ds K(r, to)).
From ergodic theory we may assume that (As) is equal to the limit of the space
average of the random function AO(ro, to) taken over a volume V, as V becomes
infinite. Using the coordinate so of ro along the magnetic lines, and a surface
element dAo orthogonal to these lines, we have

lm1 f f f
s

(29) (AO) = lim- dAo dso ds K( r, to)

= As lim J dAo| dso K(ro, to)

= As(K).

We need therefore only calculate (K).
Because of the presence of irreversible processes, such as viscous dissipation,

it is not obvious that (K) must vanish in a time-stationary situation, and to
prove that it does we must appeal to the fundamental equation of magnetohydro-
dynamics,

(30) at = curl U X B = curl U1 X B.
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This equation is a direct consequence of (1) and of the Maxwell-Faraday
equation

IaB(31) c at- crl E.

With the help of the Maxwell equation div B = 0, (30) may be written

(32) at = B * grad U1-B divU- U, * grad B.

Substituting

(33) grad B = (grad b)B + (grad B)b,

this becomes

adB -b -* -4

(34) - = B *grad U, -B div UL- U * (grad b)B - U* (grad B)b.

Taking the scalar product of this equation with B and dividing by B2, we get

(35) a logB
= b (grad U,) b- div U - U, * (gradb)b b- U1. gradlog B.

Noting that (grad b) * b vanishes and that

(36) (grad U,) * b -(grad b) U1,
we obtain

(37) dd log B + U1. grad logB + div U1 = -cK.
Noting that

d a
(38) dt= t+ U,. grad

represents time differentiation following a point moving with the velocity U1,
we obtain

(39) d logB + div U1 = -cK.

It is of interest to note [8] that -cK is the local rate at which a magnetic line
of force stretches, each point on the line being assumed to move with the velocity

U1.

The expectation value of div U1 vanishes, since U1 is a stationary random

function of r. Therefore
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(40) dt log B =(cK).

Here (-cK) must be constant, since K is a stationary random function in space
and time. If I(log B)I is not ultimately to become infinite, this constant must be
zero. The average (log B) is taken over a random sample of points moving with

the velocity U,. If, for instance on physical grounds, we impose upon log B an
upper bound log Bo, then unless (-cK) vanishes, (log B) must at some time
exceed log Bo, a contradiction. Thus we must have

(41) (K) = 0
and therefore (AO) and fi must vanish.

Writing f2 = 2sp, the Fokker-Planck equation becomes

(42) dp o2P

equation (4).

6. The Fermi acceleration

In the absence of boundary conditions, the principal solutions of (42) are too
well known to deserve special comment [5], [6]. We must however make some
mention of the consequences of the fact that the variable 0 is nonnegative so that
a special boundary condition must prevail at the value 0 = 0. We shall write
down the principal solutions for the two cases: (A) particles reflected at 0 = 0,
and (B) particles absorbed at 0 = 0. A simple discussion leads to the following
results.

Case (A).

(43) P(0, s) = 1 { exp [ - 0i2s + exp [ ( +t 2]}
Case (B).

(44) P(0, s) = 4)I2 {exp [- - 00o) I-exp [- (0+Oo)2]}

In case (B), probability is not conserved, and

(45) fo d0P(0, s)

decreases with increasing s.
In case (A), the principal solutions satisfy the boundary condition

(46) OP9 = 0.

In case (B), the boundary condition is

(47) P(0, s) = O.
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We shall now derive two mean value theorems of physical interest. The
relativistic relations between momentum, energy, and velocity lead, with the
help of (22), to the expressions

'= cosh 0,
(48) p

-= sinh 6.
mc

The mean energy is therefore

(49) W = Mc2 fo dOP cosh 0.

From (42) we have
d W f= aP f 12P(50) - dOAcosh dO cosh 0ds nic2 as a62

a2 cosh 0 _ 1I

W 01oo

Thus, in case (A) we obtain
(51) IV(s)=W(=)ep."
a remarkable expression first derived by Fermi [1] by intuitive arguments.
A similar result follows at once for the momentum in case (B),

(52) p(s) = p(O)es.
The exponential increase of the mean particle energy with distance, as given

by (51), is known as the Fermi acceleration.

7. Discussion

It is worthwhile to examine the extent to which the theory developed in the
foregoing sections would have to be modified if we were to change slightly the
assumptions made. On the whole we would expect a slight departure from the
validity of postulates 1 to 3 to affect the theory and equation (42) only slightly.
It is important to note however that this is not the case if the time stationarity
assumption is dropped. _)
The vanishing of fi depended upon the assumption that the fields U and B

are stationary in time as well as in space. If we drop the requirement of time
stationarity, we may estimate the error incurred in adopting equation (42) by
estimating the ratio Ifil/f2. The order of magnitude of f2 is given by (U/c)2/L.
If time stationarity fails to hold even approximately, we may estimate the order
of magnitude ifil as U/cL. Thus
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(53) Ifil C.
f2 U

Recalling our assumption (24), we see that this ratio is truly enormous. We may
therefore expect that even a small departure from time stationarity affects the
theory in a radical manner and may altogether mask the effect of Fermi
acceleration.

In astrophysical problems, we frequently encounter situations in which time
stationarity may not be assumed to prevail to a high level of accuracy. It is
therefore of the utmost importance in applying the theory to such situations
to verify that the condition of time stationarity is fulfilled. This point was men-
tioned but not sufficiently stressed by Fermi, and seems to have been generally
overlooked in the literature [9], [10], [11]. For example, the application of the
concept of Fenni acceleration to the acceleration of cosmic rays by such an
essentially nonstationary object as the Crab Nebula should be done with great
caution. It should be stressed that nonstationarity may produce either a decelera-
tion or an acceleration of charged particles, often much larger than the Fermi
acceleration. On the other hand a nonstationary phenomenon may often not
last for a very long time. In such cases, the energy of a typical charged particle
may not change by more than an order of magnitude.

I am indebted to the Office of Scientific Research of the U.S. Air Force for
supporting this work, and to Professor L. G. Henyey and Professor K. M. Watson
for valuable discussions.
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