# AN APPLICATION OF ERGODIC THEOREMS IN THE THEORY OF QUEUES

DAVID M. G. WISHART UNIVERSITY OF BIRMINGHAM

## 1. Introduction

We establish some notation:  $\{Z_k, k \ge 0\}$  is a homogeneous Markov chain taking its values in a locally compact Hausdorff space  $\mathfrak{X}$ ; we denote by  $\Sigma$  the  $\sigma$ -algebra of subsets of  $\mathfrak{X}$  generated by the open sets;  $ca(\Sigma)$  is the Banach space of totally finite regular measures on  $\Sigma$ ; and  $C_0(\mathfrak{X})$  is the Banach space of realvalued, bounded, continuous functions on  $\mathfrak{X}$  which vanish at infinity. If  $\Phi_k \in ca(\Sigma)$  is the probability measure of  $Z_k$  then there exists a bounded linear operator T on  $ca(\Sigma)$  into itself such that  $\Phi_{k+1} = T\Phi_k$ . If this operator can be represented by a real-valued function P on the product space  $\mathfrak{X} \times \Sigma$  with the properties

- (a)  $0 \leq P(x, F) \leq P(x, \mathfrak{X}) = 1$  for all  $x \in \mathfrak{X}, F \in \Sigma$ ;
- (b) for each  $x \in \mathfrak{X}$ ,  $P(x, \cdot) \in ca(\Sigma)$ ;
- (c) for each  $F \in \Sigma$ ,  $P(\cdot, F)$  is  $\Sigma$ -measurable;

then the mapping of  $ca(\Sigma)$  into itself takes the form

(1) 
$$\Phi_{k+1}(F) = \int_{\mathfrak{X}} \Phi_k(dx) P(x, F)$$

for each  $F \in \Sigma$ . We define inductively a sequence of real-valued functions  $P_r(\cdot, \cdot)$  on  $\mathfrak{X} \times \Sigma$  by the relations

(2)  

$$P_{r+1}(x, F) = \int_{\mathfrak{X}} P_r(x, dy) P_1(y, F)$$

$$P_1(x, F) \equiv P(x, F).$$

We may identify the conditional probability  $P\{Z_{k+r} \in F | Z_k = x\}$  with the function  $P_r(x, F)$ , so that the *r*th iterate of the operator T may be written

(3) 
$$(T^{r}\Phi)(F) = \int_{\mathfrak{X}} \Phi(dx) P_{r}(x, F).$$

A principal problem of ergodic theory has been to determine conditions under which the sequence of operators  $n^{-1} \sum_{r=0}^{n-1} T^r$  converges in some sense. The underlying Banach space on which T is defined induces various topologies on the space of bounded linear operators. Since the norm of an arbitrary operator S is well defined by  $||S|| = \sup_{\mu} ||S\mu||/||\mu||$  we can ask whether there exists a bounded linear operator  $T_1$  such that  $\lim_{n\to\infty} ||n^{-1}\sum_{r=0}^{n-1} T^r - T_1|| = 0$ . A weaker convergence requires the existence of an operator  $T_1$  such that  $\lim_{n\to\infty} ||(n^{-1}\sum_{r=0}^{n-1} T^r)\mu - T_1\mu|| = 0$  for each  $\mu \in ca(\Sigma)$ . Yosida and Kakutani [12] call these the uniform ergodic theorem and the mean ergodic theorem respectively, and they have proved that

(I) the uniform ergodic theorem holds if T is a quasi-strongly compact operator, that is, if there exist a compact operator V and an integer p such that  $||T^p - V|| < 1$ ;

(II) the mean ergodic theorem holds if T is a quasi-weakly compact operator, that is, if there exist a weakly compact operator V and an integer p such that  $||T^p - V|| < 1$ .

If an operator T is (weakly) compact then it satisfies condition (II) I automatically. The problem of identifying a quasi-weakly compact operator is still open. In this connection Kendall has shown [7] that if T is a bounded linear operator on  $ca(\Sigma)$  into itself which sends positive elements into positive elements of equal norm, and if T is the adjoint of an operator on  $C_0(\mathfrak{X})$ , then T is not quasi-weakly compact.

In section 2 we shall illustrate this theorem by means of an example from the theory of queues. Yet, having exhibited an operator T to which the theorems of Yosida and Kakutani do not apply, we may still ask if there is not some other sense in which the sequence of operators  $n^{-1} \sum_{r=0}^{n-1} T^r$  converges. In section 3 we shall examine further our operator and show that (if the system is subject to some small restraint) it possesses a unique stationary distribution  $\Gamma$ . Then the ergodic theorem for Markov chains holds without any further restrictions on the transition probability  $P(\cdot, \cdot)$ .

**THEOREM** (Doob [2]-Kakutani [4]). For each  $B \in \Sigma$  there exists a set  $E_B \in \Sigma$  such that  $\Gamma(E_B) = 0$  and

(4) 
$$\lim_{n\to\infty}\frac{1}{n}\sum_{r=1}^{n}P_r(x_0, B) = Q(x_0, B)$$

for  $x_0 \notin E_B$ , where Q is almost everywhere bounded, nonnegative,  $\Sigma$ -measurable, and invariant in the sense that  $Q(y, B) = \int_{\mathfrak{N}} P(y, dz) Q(z, B)$  for  $\Gamma$ -almost all y.

In section 4 we shall show that for our queuing example the transition probability  $P(x, \cdot)$  is absolutely continuous with respect to the stationary distribution  $\Gamma(\cdot)$ ; then the limit (4) becomes universal in  $x_0$  and the set function  $Q(x_0, \cdot)$ is a stationary distribution for all  $x_0$ .

#### 2. The transition operator

We shall discuss the queuing system usually denoted by M/G/1 whose primary characteristics are:

(i) the interarrival intervals,  $u_n$ , are assumed to be independent and identically distributed according to the law  $dA(u) \equiv \exp(-\alpha u)\alpha du$ , where  $0 < u < \infty$ ;

(ii) the service times,  $v_n$ , are assumed to be independent of each other and of the  $u_n$ , and to be identically distributed according to the law dB(v), where  $0 < v < \infty$ ; B(0+) = 0. It will be found advisable to restrict the support D of  $B(\cdot)$ . If B(V) = 1 and  $B(V - \epsilon) < 1$  for some finite V and all  $\epsilon > 0$ , then we define D as the closed interval [0, V]; if on the other hand B(V) < 1 for every finite V we take D as the half-closed real line  $[0, \infty)$ .

We shall assume that  $0 < \alpha < \infty$ , and  $0 < b \equiv \int v dB(v) < \infty$ . The traffic intensity of this system is then defined to be  $\rho \equiv \alpha b$ . (Recent descriptions of this system have been given by Cox [1], Gaver [3], Kendall [6], Takács [10], and Wishart [11].)

Our discussion will center on the stochastic process  $\{[N(t), y(t)], t \ge 0\}$ where N(t) is the number of customers in the system at time t and y(t) is the unexpended service time of the customer receiving service at time t. This process takes its values in the phase space

(5) 
$$\mathfrak{X} = \{(r, x) : r = 0, 1, 2, \cdots ; x = 0 \text{ when } r = 0, \text{ and } x \in D \text{ otherwise}\},\$$

which was also introduced by Keilson and Kooharian [5]. We define certain special subsets  $X_r \subset \mathfrak{X} : X_r \equiv \{(r, x) : x \in D\}$  for  $r \geq 1$ ;  $X_0 \equiv \{(0, 0)\}$ . The general subset of  $\mathfrak{X}$  is then of the form  $F = \bigcup F_r$  where  $F_r \subset X_r$ . We take as the open sets of  $\mathfrak{X}$  those sets F whose components  $F_r$  are open in the usual topology for  $X_r$ . The compact sets in this topology are those sets F which are the union of a finite number of sets  $F_r$  compact in the usual topology for  $X_r$ (that is,  $F_r$  closed and bounded in  $X_r$ ). With this topology  $\mathfrak{X}$  is a locally compact Hausdorff space. We shall denote by  $\mathfrak{D}(\mathfrak{D}_r)$  the class of Borel subsets of  $\mathfrak{X}(X_r)$ : that is, the smallest  $\sigma$ -algebra of subsets of  $\mathfrak{X}(X_r)$  containing the open sets.

We introduce now a class of bounded continuous functions on  $\mathfrak{X}$  which vanish at infinity. For any real-valued function f on  $\mathfrak{X}$  we define functions  $f_r$  on  $X_r$  by the relations  $f[(0, 0)] = f_0, f[(r, x_r)] = f_r(x_r)$ . If we require that  $f_r \in C_0(X_r)$ with the usual supremum norm, and  $\lim_{r\to\infty} ||f_r|| = 0$ , and if we write  $f \equiv [f_0, f_1, f_2, \cdots]$  with linear operations defined termwise, then the linear set thus defined is complete in the topology generated by the norm  $||f|| = \max \{|f_0|, \sup_{r\geq 1} ||f_r||\}$ . It follows from the condition  $\lim_{r\to\infty} ||f_r|| = 0$  that the functions of this set vanish at infinity, since if we are given  $\epsilon > 0$  we can find N such that  $||f_r|| < \epsilon$  for all r > N and therefore the set  $\{(r, x) : f_r(x) \ge \epsilon\}$  is the union of at most N compact subsets  $F_r \subset X_r$ : that is,  $\{(r, x) : f_r(x) \ge \epsilon\}$  is a compact subset of  $\mathfrak{X}$ . We shall denote this normed linear space of bounded continuous functions on  $\mathfrak{X}$  by  $C_0(\mathfrak{X})$ .

Because of the simplicity of the negative exponential input we shall make extensive use of the linear subset  $\mathcal{E} \subset C_0(\mathfrak{X})$  spanned by functions of the form

(6) 
$$e = [1, ze^{-sx_1}, z^2e^{-sx_2}, z^3e^{-sx_3}, \cdots],$$

where  $(r, x_r) \in X_r$  and s, z are real numbers satisfying  $0 < s < \infty$ ,  $0 \leq z < 1$ . If

(7) 
$$e' = [1, z_1 e^{-s' x_1}, z_1^2 e^{-s' x_2}, \cdots]$$

we define ring multiplication in & by the convention

(8) 
$$ee' = [1, (zz_1)e^{-(s+s')x_1}, (zz_1)^2e^{-(s+s')x_2}, \cdots]$$

and with this definition  $\mathcal{E}$  is an algebra. The elements of  $\mathcal{E}$  separate points in the sense that if  $(n_1, y_1) \neq (n_2, y_2)$  we can find an  $e \in \mathcal{E}$  such that  $z^{n_1}e^{-sy_1} \neq z^{n_2}e^{-sy_2}$ . Finally we observe that the elements of  $\mathcal{E}$  have no common zero other than the point at infinity of  $\mathfrak{X}$ . Hence the elements of the closure of  $\mathcal{E}$  (in the strong topology on  $C_0(\mathfrak{X})$ ) have no other common zero, and so, by an appeal to the Stone-Weierstrass theorem [9], we can assert that  $\mathcal{E}$  is dense in  $C_0(\mathfrak{X})$  in the strong topology.

The space  $[C_0(\mathfrak{X})]^*$  adjoint to  $C_0(\mathfrak{X})$  is the space  $ca(\Sigma)$  of finite regular measures on  $\Sigma$ . We may represent an element  $\Psi \in ca(\Sigma)$  in vector form  $\Psi = [\Psi_0, \Psi_1, \Psi_2, \cdots]$ , where  $-\infty < \Psi_0 < \infty$  and  $\Psi_r \in ca(\Sigma_r)$  with the usual norm  $||\Psi_r|| = total variation of <math>\Psi_r$  over  $\Sigma_r$ . Then the norm of  $\Psi$  is given by  $||\Psi|| = |\Psi_0| + \sum_{r=1}^{\infty} ||\Psi_r|| < \infty$ . We shall use the notation  $(\Psi, f)$  for the value at the point  $f \in C_0(\mathfrak{X})$  of the linear functional  $\Psi$  which is isomorphic to the measure  $\Psi \in ca(\Sigma) : (\Psi, f) = \Psi_0 f_0 + \sum_{r=1}^{\infty} (\Psi_r, f_r)$  where  $(\Psi_r, f_r) = \int_{X_r} f_r \, d\Psi_r$ . The symbol  $\hat{f}$  will denote the element of  $[C_0(\mathfrak{X})]^{**}$  which is isomorphic to the element  $f \in C_0(\mathfrak{X})$  under the natural mapping  $(\Psi, f) = (\hat{f}, \Psi)$  for all  $\Psi$ , and  $\hat{C}_0(\mathfrak{X})$  will denote the natural mapping  $(\Psi, f) = (\hat{f}, \Psi)$  for all  $\Psi$ , and  $\hat{C}_0(\mathfrak{X})$  will denote the natural mapping  $(\Psi, f) = (\hat{f}, \Psi)$  for all  $\Psi$ , and  $\hat{C}_0(\mathfrak{X})$  will denote the natural mapping  $(\Psi, f) = (\hat{f}, \Psi)$  for all  $\Psi$ , and  $\hat{C}_0(\mathfrak{X})$  will denote the natural mapping  $(\Psi, f) = (\hat{f}, \Psi)$  for all  $\Psi$ , and  $\hat{C}_0(\mathfrak{X})$  will denote the natural mapping  $(\Psi, f) = (\hat{f}, \Psi)$  for all  $\Psi$ , and  $\hat{C}_0(\mathfrak{X})$  will denote the natural embedding of  $C_0(\mathfrak{X})$  in  $[C_0(\mathfrak{X})]^{**}$ . If e is an element of  $\mathcal{E}$  we shall write  $\psi(s, z) = (\Psi, e)$ .

Lastly we observe that if  $\mu$ ,  $\nu$  are elements of  $ca(\Sigma)$ , then  $\mu$  is absolutely continuous with respect to  $\nu$  if and only if  $\mu_r$  is absolutely continuous with respect to  $\nu_r$  for all r. We shall use Halmos' notation and write  $\mu \ll \nu$  if and only if  $\mu_r \ll \nu_r$  for all r.

It was noted by D. G. Kendall [6] that the process [N(t), y(t)] is Markovian for all  $t \ge 0$ . We have investigated elsewhere its behavior in continuous time [11]. In this paper we shall confine our attention to the set of arrival epochs

(9) 
$$\Pi = \{t_k : N(t_k) = N(t_k - 0) + 1, k = 0, 1, 2, \cdots \},\$$

taking  $t_0 = 0$ . Then, writing

(10) 
$$[N_k, y_k] = [N(t_k - 0), y(t_k - 0)], \qquad t_k \in \Pi,$$

the Markov chain  $\{[N_k, y_k], k = 0, 1, 2, \cdots\}$  is homogeneous with a transition operator on  $ca(\Sigma)$  to itself which we shall denote by T: that is, if  $\Phi_k \in ca(\Sigma)$  is the probability measure of  $[N_k, y_k]$  then  $\Phi_{k+1}$ , the probability measure of  $[N_{k+1}, y_{k+1}]$ , is given by  $\Phi_{k+1} = T\Phi_k$ . It is our purpose to show that T is the adjoint of an operator on  $C_0(\mathfrak{X})$ .

We may represent this operator by a real-valued function P on the product space  $\mathfrak{X} \times \Sigma$  with the properties (a) to (c) enumerated in the introduction, so

that the mapping of  $ca(\Sigma)$  into itself which we have defined above takes the form (1).

The function P also determines an operator  $\overline{T}$  on the linear space  $\mathfrak{M} \subset [\operatorname{ca}(\Sigma)]^*$  of bounded measurable functions into itself by the relation

(11) 
$$g \to \overline{T}g = \int_{\mathfrak{X}} P(\cdot, dx)g(x), \qquad g \in \mathfrak{M},$$

and this mapping is the contraction to  $\mathfrak{M}$  of the mapping  $T^*$  on  $[ca(\Sigma)]^*$  to itself defined by  $(h, T\mu) = (T^*h, \mu)$  for  $h \in [ca(\Sigma)]^*$  and every  $\mu \in ca(\Sigma)$ .  $\overline{T}$  is a positive operator of norm 1 leaving invariant the function which is constant everywhere on  $\mathfrak{X}$ .

Since the Markov chain is homogeneous it will be sufficient to investigate a single relation,  $\Phi_1 = T\Phi_0$ , say. The suffixes may be dropped and we shall from now on write  $\Phi$  and  $\Psi$  for  $\Phi_0$  and  $\Phi_1$  respectively, so that  $\Psi = T\Phi$ . In the notation established above we have  $\varphi(s, z) = (\Phi, e)$  and  $\psi(s, z) = (\Psi, e)$  for  $e \in \mathcal{E}$ . It is illuminating to cast these functions into the same form; we have

(12) 
$$\varphi(s, z) = (\Phi, e) = (\hat{e}, \Phi)$$

and

(13) 
$$\psi(s, z) = (\Psi, e) = (T\Phi, e) = (\hat{e}, T\Phi) = (T^*\hat{e}, \Phi).$$

Since  $\hat{e} \in \mathfrak{M}$ , we have  $T^*\hat{e} = \overline{T}\hat{e}$  which, by equation (11), we can write as

(14) 
$$T\hat{e} = \mathbf{E}[z^{N_1}e^{-sy_1}] [N_0, y_0]]$$

The last expression for  $\psi(s, z)$  is still not very useful. However,  $T\hat{e}$  is a function which we can calculate and we shall show that  $T\hat{e} \in \hat{E}$ . Since  $\hat{E}$  is dense in  $C_0(\mathfrak{X})$ we conclude that  $T^*$  leaves  $\hat{C}_0(\mathfrak{X})$  invariant in  $[C_0(\mathfrak{X})]^{**}$ . Consequently there is an operator S on  $C_0(\mathfrak{X})$  to itself such that  $S^* = T$ , and the element  $T\hat{e}$  in  $\hat{C}_0(\mathfrak{X})$  is isomorphic to Se in  $C_0(\mathfrak{X})$ . Hence the expression (13) for  $\psi(s, z)$  may be rewritten as  $\psi(s, z) = (T\Phi, e) = (\Phi, Se)$  which we now proceed to compute.

Underlying the present study is the product space

(15) 
$$\mathfrak{X} \times \mathfrak{U}_1 \times \mathfrak{U}_2 \times \cdots \times \mathfrak{V}_1 \times \mathfrak{V}_2 \times \cdots,$$

where  $\mathfrak{X}$  is the range space of  $[N_0, y_0]$ ,  $\mathfrak{U}_1$  is the range space of the random variable  $u_i$  and is a copy of the real line, and  $\mathfrak{V}_j$  is the range space of the random variable  $v_j$  and is a copy of D. The distribution of  $[N_0, y_0]$  is  $\Phi$  so we may set up the product measure

$$\Phi \times A \times A \times \cdots \times B \times B \times \cdots,$$

since all the random variables are independent.

In order to evaluate

(17) 
$$\mathbf{E}[z^{N_1}e^{-sy_1}|N_0 = m, y_0 = x],$$

we suppose first that  $m \ge 1$ , and we write  $V_j = v_1 + \cdots + v_j$ . Then  $t_1$  may occur in one of the following nonoverlapping intervals (0, x),  $(x, x + v_1)$ ,  $(x + v_1, x + v_1 + v_2)$ ,  $\cdots$ ,  $(x + V_j, x + V_{j+1})$ ,  $\cdots$ ,  $(x + V_m, \infty)$ ; with  $[N_1, y_1]$  taking

the corresponding values  $(m + 1, x - u_1)$ ,  $(m, x + v_1 - u_1)$ ,  $(m - 1, x + v_1 + v_2 - u_1)$ ,  $\cdots$ ,  $(m - j, x + V_{j+1} - u_1)$ ,  $\cdots$ , (0, 0). We can therefore write down the expectation of  $z^{N_1} \exp(-sy_1)$  with respect to the distribution of  $u_1$  as a sum of terms

(18) 
$$\int_{0}^{x} z^{m+1} e^{-s(x-u_{1})} e^{-\alpha u_{1}} \alpha \, du_{1} + \int_{x}^{x+v_{1}} z^{m} e^{-s(x+v_{1}-u_{1})} e^{-\alpha u_{1}} \alpha \, du_{1} + \cdots + \int_{x+v_{m-1}}^{x+v_{m}} z^{1} e^{-s(x+v_{m}-u_{1})} e^{-\alpha u_{1}} \alpha \, du_{1} + \int_{x+v_{m}}^{\infty} z^{0} e^{-\alpha u_{1}} \alpha \, du_{1}$$
$$= z^{m+1} \frac{\alpha}{\alpha-s} \left( e^{-sx} - e^{-\alpha x} \right) + z^{m} \frac{\alpha}{\alpha-s} e^{-\alpha x} \left( e^{-sv_{1}} - e^{-\alpha v_{1}} \right) + \cdots + z \frac{\alpha}{\alpha-s} e^{-\alpha x - \alpha v_{m-1}} \left( e^{-sv_{m}} - e^{-\alpha v_{m}} \right) + z^{0} e^{-\alpha x - \alpha v_{m}}.$$

If we now take the expectation with respect to the product measure in the space  $\mathcal{U}_1 \times \cdots \times \mathcal{U}_m$  we obtain

(19) 
$$\mathbf{E}[z^{N_{1}}e^{-sy_{1}}|N_{0} = m, y_{0} = x]$$

$$= z^{m+1}\frac{\alpha}{\alpha - s} (e^{-sx} - e^{-\alpha x})$$

$$+ \frac{\alpha}{\alpha - s} e^{-\alpha x}[B^{*}(s) - B^{*}(\alpha)]\sum_{r=1}^{m} z^{r}[B^{*}(\alpha)]^{m-r} + [B^{*}(\alpha)]^{m} e^{-\alpha x},$$

$$B^{*}(s) = \int_{0}^{\infty} e^{-sy} dB(v).$$

This is for  $m \ge 1$ . If m = 0,  $t_1$  may occur in  $(0, v_0)$  or in  $(v_0, \infty)$ , so that  $[N_1, y_1]$  may take the values  $(1, v_0 - u_1)$  or (0, 0) and we have therefore two terms only,

(20) 
$$z^{1} \int_{0}^{v_{0}} e^{-s(v_{0}-u_{1})} e^{-\alpha u_{1}} \alpha \, du_{1} + z^{0} \int_{v_{0}}^{\infty} e^{-\alpha u_{1}} \alpha \, du_{1},$$

and when we integrate with respect to  $v_0$  we obtain

(21) 
$$\mathbf{E}[z^{N_1}e^{-sy_1}|N_0 = y_0 = 0] = z \frac{\alpha}{\alpha - s} [B^*(s) - B^*(\alpha)] + B^*(\alpha).$$

If we write  $e_{s,z}$  for e and  $e_0$  for the vector  $[1, 0, 0, \cdots]$  then the equations (18) and (21) may be written together in the form

$$(22) T^* \hat{e}_{s,z} = \frac{z\alpha}{\alpha - s} \left( \hat{e}_{s,z} - \hat{e}_{\alpha,z} \right) + \hat{e}_{\alpha,B^*(\alpha)} \\ + \frac{z\alpha}{\alpha - s} \frac{B^*(s) - B^*(\alpha)}{z - B^*(\alpha)} \left( \hat{e}_{\alpha,z} - \hat{e}_{\alpha,B^*(\alpha)} + \left\{ \frac{z\alpha}{\alpha - s} \left[ B^*(s) - B^*(\alpha) \right] + B^*(\alpha) - 1 \right\} \hat{e}_0.$$

Hence  $T^*\hat{e}$  is an element of  $\hat{\mathcal{E}}$  and since the *e* are dense in  $C_0(\mathfrak{X})$  it follows that  $T^*$  leaves  $\hat{C}_0(\mathfrak{X})$  invariant in  $[C_0(\mathfrak{X})]^{**}$ . If we write *S* for the contraction of  $T^*$  to

 $\hat{C}_0(\mathfrak{X})$  transferred to  $C_0(\mathfrak{X})$ , then S (being a contraction of  $T^*$ ) is a bounded linear operator. Also, for all  $f \in C_0(\mathfrak{X})$ 

(23) 
$$(S^*\Phi, f) = (\Phi, Sf) = (\widehat{Sf}, \Phi) = (T^*\hat{f}, \Phi) = (\hat{f}, T\Phi) = (T\Phi, f)$$

holds. Therefore  $S^* = T$ , and the element  $T^*\hat{e}$  which we have calculated is isomorphic to the element Se in  $C_0(\mathfrak{X})$ .

We have therefore shown that the transition operator T associated with the Markov chain  $\{[N_k, y_k], k \ge 0\}$  is not quasi-weakly compact and consequently that the ergodic theorems of Yosida and Kakutani cannot be applied to this system.

### 3. The stationary distribution

Since  $T^*\ell$  is isomorphic with the element Se in  $C_0(\mathfrak{X})$  we have seen that we may write  $\psi(s, z) = (\Phi, Se)$ . Hence, regarding (16) as an operator equation in  $\varepsilon$  and taking the inner product with respect to  $\Phi$ , we obtain

(24) 
$$\psi(s, z) = \frac{z\alpha}{\alpha - s} \left[ \varphi(s, z) - \varphi(\alpha, z) \right] + \varphi[\alpha, B^*(\alpha)] + \frac{z\alpha}{\alpha - s} \frac{B^*(s) - B^*(\alpha)}{z - B^*(\alpha)} \left\{ \varphi(\alpha, z) - \varphi[\alpha, B^*(\alpha)] \right\} + \phi_0 \left\{ \frac{z\alpha}{\alpha - s} \left[ B^*(s) - B^*(\alpha) \right] + B^*(\alpha) - 1 \right\},$$

where  $\phi_0 = \Phi[(0, 0)] = (\Phi, e_0)$ .

We seek solutions (if any) of the equation  $\psi = \lambda \varphi$ . The existence of a solution of this equation implies the existence of an element  $\Phi \in ca(\Sigma)$  such that  $(T\Phi - \lambda\Phi, e) = 0$  for all  $e \in \mathcal{E}$ , and since  $\mathcal{E}$  is dense in  $C_0(\mathfrak{X})$  we conclude that  $\Phi$  satisfies  $T\Phi = \lambda\Phi$ . If, further,  $\Phi(F) \ge 0$  for all  $F \in \Sigma$ , and  $0 < \Phi(\mathfrak{X}) < \infty$ then  $\Phi$  is readily normalized to a probability measure.

We set aside for the moment the question of positivity and investigate the existence of solutions of the equation  $\psi = \lambda \varphi$  which satisfy the condition  $0 < \varphi(0, 1) < \infty$ . Putting first z = 0 we obtain  $\varphi(\alpha, B^*(\alpha)) = \phi_0[1 + \lambda - B^*(\alpha)]$ , and inserting this in (24) we have

(25) 
$$\left(\lambda - \frac{z\alpha}{\alpha - s}\right)\varphi(s, z) = \phi_0 \left\{\frac{z\alpha}{\alpha - s} \left[B^*(s) - B^*(\alpha)\right] \frac{z - 1 - \lambda}{z - B^*(\alpha)} + \lambda\right\} + \varphi(\alpha, z) \frac{z\alpha}{\alpha - s} \frac{B^*(s) - z}{z - B^*(\alpha)}$$

The function  $\varphi(s, z)$  is a regular function of the complex variables s and z in the region defined by the inequalities Re s > 0, and |z| < 1. Consequently the right side of (25) must be zero at points  $s_{\lambda}$  defined by  $s_{\lambda} = \alpha(\lambda - z)/\lambda$ ; substitution in (25) enables us now to determine  $\varphi(\alpha, z)$ . We obtain

FOURTH BERKELEY SYMPOSIUM: WISHART

(26) 
$$0 = \phi_0 \left\{ \lambda [B^*(s_\lambda) - B^*(\alpha)] \frac{z - 1 - \lambda}{z - B^*(\alpha)} + \lambda \right\} + \varphi(\alpha, z) \lambda \frac{B^*(s_\lambda) - z}{z - B^*(\alpha)},$$

and introducing this into (19) we derive finally

(27) 
$$\left(\lambda - \frac{z\alpha}{\alpha - s}\right)\frac{\varphi(s, z)}{\phi_0} = \lambda + \frac{z\alpha}{\alpha - s}\left\{(z - \lambda)\frac{B^*(s) - B^*(s_\lambda)}{z - B^*(s_\lambda)} - 1\right\}$$

Let us now assume that  $\lambda \neq 1$ , and impose the condition  $0 < \varphi(0, 1) < \infty$ ; equation (27) yields  $(\lambda - 1)\varphi(0, 1)/\phi_0 = \lambda + (1 - \lambda - 1) = 0$ , which contradicts our assumption. There exist therefore no characteristic values of T other than  $\lambda = 1$  which can give probabilistically meaningful results. When  $\lambda = 1$ we have

(28) 
$$\varphi(s,z) = \phi_0 \left\{ 1 + \alpha z \frac{1}{1 - \frac{1 - K(z)}{1 - z}} \frac{B^*(s_1) - B^*(s)}{s - s_1} \right\},$$

where we have written

(29) 
$$K(z) = B^*(s_1) = \int_0^\infty e^{-\alpha(1-z)v} \, dB(v)$$

We note that K(1) = 1, and  $K'(1) = \alpha b = \rho$ . We also have obtained the function  $\varphi(s, z)$  in [11] as

(30) 
$$\lim_{t\to\infty} \mathbf{E}[z^{N(t)}e^{-sy(t)}].$$

The power series expansion of K(z) has all its coefficients positive and  $K(0) = B^*(\alpha) > 0$ , so that for real z it is a monotonically increasing function passing through the point (1, 1). If  $\rho > 1$ , then  $K'(1) = \rho > 1$ , and there exists a real zero of the function K(z) - z at a point  $z_0 < 1$ , say. Rouché's theorem shows that  $z = z_0$  is the only zero of K(z) - z properly inside the unit circle. The right side of (28) has therefore a pole at  $z = z_0$ , whereas the left side, by construction, is regular for all z inside the unit circle. It is not therefore possible that there exists a stationary distribution when  $\rho > 1$ .

We shall show that when  $\rho \leq 1$  the right side of (28) is a regular function of z everywhere inside the unit circle. For

(31) 
$$G(z) \equiv \frac{1 - K(z)}{1 - z} = \sum_{r=0}^{\infty} z^r (k_{r+1} + k_{r+2} + \cdots)$$

is a power series with positive coefficients and

(32) 
$$G(1) = \lim_{z \to 1} \frac{1 - K(z)}{1 - z} = \rho \leq 1.$$

When  $\rho < 1$  it follows immediately from Rouché's theorem that 1 - G(z) has no zeros inside the unit circle, since on |z| = 1, we have  $|G(z)| \leq G(1) < 1$ . When  $\rho = 1$  we observe that  $G(1 - \epsilon) < 1$  for every  $\epsilon > 0$ , from which we can conclude that 1 - G(z) has no zero inside any circle  $|z| = 1 - \epsilon < 1$ . Hence 1 - G(z) is regular and nonzero inside the unit circle when  $\rho \leq 1$  and therefore

 $[1 - G(z)]^{-1}$  is also regular inside the unit circle when  $\rho \leq 1$ , and our assertion is proved.

We have thus obtained an invariant function  $\varphi$  corresponding to a finite measure which we will denote by  $\Gamma \in ca(\Sigma)$ . For this function to be probabilistically meaningful we must normalize it, and this condition enables us to evaluate  $\phi_0$  (which from now on we must call  $\Gamma_0$ ). We require  $\varphi(0, 1) = 1$ : then we obtain from (22)

(33) 
$$\Gamma_0 = 1 - \rho, \qquad \rho \leq 1.$$

(Note. Although we have shown that (22) is a regular function of z for  $\rho \leq 1$ , the function  $\varphi(s, z)$  can only be said to exist when  $\rho < 1$ .)

We shall now establish the positivity of the set function  $\Gamma$ . We consider  $\varphi(s, z)$  given by (28) in the region of the real (s, z)-plane defined by the inequalities  $0 \leq z < 1$ ,  $\alpha < s < \infty$ . Since  $s_1 = \alpha(1-z)$  we have also  $0 < s_1 \leq \alpha < s$ . We saw above that G(z) = [1 - K(z)]/(1-z) is a power series with positive coefficients, and  $G(1) = \rho < 1$ . Then for  $0 \leq z < 1$  we have  $G(z) \leq \rho < 1$ , so that

(34) 
$$(1-\rho)\left\{1-\frac{1-K(z)}{1-z}\right\}^{-1} = P(z) = \sum_{r=0}^{\infty} p_r z^r$$

is absolutely convergent in the same half-open interval and has also positive coefficients. Further,

$$(35) \qquad \frac{B^*(s_1) - B^*(s)}{s - s_1} = \int_0^\infty \frac{e^{-s_1v} - e^{-s_v}}{s - s_1} \, dB(v) = \int_0^\infty e^{-s_1v} \frac{1 - e^{-(s - s_1)v}}{s - s_1} \, dB(v) \\ = \int_0^\infty e^{-s_1v} \left\{ \int_0^v e^{-(s - s_1)t} \, dt \right\} \, dB(v) \\ = \int_0^\infty e^{-st} \, dt \int_t^\infty e^{-s_1(v - t)} \, dB(v) \\ = \int_0^\infty e^{-st} \, dt \int_0^\infty e^{-\alpha(1 - z)w} \, dB(w + t) \\ = \int_0^\infty e^{-st} \, dt \sum_{r=0}^\infty z^r \int_0^\infty \frac{(\alpha w)^r}{r!} e^{-\alpha w} \, dB(w + t) \\ = \int_0^\infty e^{-st} \, dt \sum_{r=0}^\infty z^r \beta_r(t),$$

say, where

(36) 
$$\beta_r(t) = \int_0^\infty \frac{(\alpha w)^r}{r!} e^{-\alpha w} dB(w+t).$$

Consequently, the rth component of  $\Gamma$  has a density which we can write in the form

(37) 
$$d\Gamma_r(t) = \alpha \sum_{n=0}^{r-1} p_{r-n} \beta_n(t) dt, \qquad 0 \leq t < \infty; r \geq 1.$$

 $\beta_n(t)$  is positive for  $0 \leq t < \infty$  and we have shown that P(z) has a power series

expansion with positive coefficients so that  $\Gamma_r$  has a positive density with respect to the Lebesgue measure on  $(X_r, \Sigma_r)$  for each  $r \ge 1$ . If D is the finite closed interval [0, V] then we define

(38) 
$$\beta_r(t) = \int_t^V \frac{[\alpha(v-t)]^r}{r!} e^{-\alpha(v-t)} dB(v)$$

With this modification equation (38) remains correct for  $0 \leq t \leq V$ . (In this case it will be usual that  $\beta_r(t) > 0$  for  $0 \leq t < V$  but  $\beta_r(V) = 0$ .) Also  $\Gamma_0 = 1 - \rho$ . Hence  $\Gamma(F) \geq 0$  for every  $F \in \Sigma$ , as was to be shown.

We have therefore shown in this section that

- (i)  $\lambda = 1$  is the unique characteristic value of T;
- (ii) there exist no solutions of  $\psi = \varphi$  for  $\rho \ge 1$ ;

(iii) when  $\rho < 1$  there exists a unique solution of  $\psi = \varphi$  given by (28) with  $\Gamma_0 = 1 - \rho$ , and the inverse function  $\Gamma$  satisfies  $T\Gamma = \Gamma$ ;

(iv)  $\Gamma(F) \geq 0$  for every  $F \in \Sigma$ .

## 4. Absolute continuity

In this section we prove that  $P(\xi, \cdot)$  is absolutely continuous with respect to  $\Gamma(\cdot)$  for every  $\xi \subset \mathfrak{X}$ .

Let us denote the transition probability  $P(\xi, \cdot)$  as an element of  $ca(\Sigma)$  by the vector  $\pi^{\xi} = [\pi^{\xi}_{0}, \pi^{\xi}_{1}, \pi^{\xi}_{2}, \cdots]$ . Then our assertion is proved when we have shown that  $\pi^{\xi}_{r} \ll \Gamma_{r}$  for each r and every  $\xi$ . With this notation the expression (19) may be written as  $(\pi^{\xi}, e)$  where  $\xi = (m, x)$ . Thus we must compare the coefficient of  $z^{r}$  in (19) with the coefficient of  $z^{r}$  in (28).

We have already seen that when  $\rho < 1$  there exists for each  $r \ge 1$  a Lebesgue summable function  $g_r$  such that

(39) 
$$d\Gamma_r = g_r \, dx_r, \qquad r \ge 1,$$

where  $g_r(u) > 0$  for  $0 \leq u < \infty$ .

We treat the terms of (19) in the same way: the coefficient of  $z^r$ , where  $1 \leq r \leq m$ , is

(40) 
$$\alpha e^{-\alpha x} [B^*(\alpha)]^{m-r} \frac{B^*(\alpha) - B^*(s)}{s - \alpha}$$
$$= \alpha e^{-\alpha x} [B^*(\alpha)]^{m-r} \int_0^\infty e^{-st} dt \int_0^\infty e^{-\alpha w} dB (w + t)$$

so that

(41) 
$$d\pi_r^{\xi} = f_r^{\xi} \, dx_r$$

where

(42) 
$$f_r^{\sharp}(t) = \alpha e^{-\alpha x} [B^*(\alpha)]^{m-r} \int_0^\infty e^{-\alpha w} dB (w+t), \qquad 0 \le t < \infty; 1 \le r \le m,$$

is everywhere positive [the modifications necessary when D is bounded will be clear from the remarks following equation (37)]; the coefficient of  $z^{m+1}$  is

ERGODIC THEOREMS FOR QUEUES

(43) 
$$\frac{e^{-\alpha x} - e^{-sx}}{s - \alpha} = \int_0^x e^{-st} e^{-\alpha(x-t)} dt$$

so that

(44) 
$$d\pi_{m+1}^{\xi} = e^{-\alpha(x-x_{m+1})} dx_{m+1}, \qquad 0 \leq x_{m+1} \leq x.$$

Also  $\pi_r^{\xi} = 0$  for r > m + 1. Hence

(45) 
$$d\pi_r^{\xi} = h_r^{\xi} d\Gamma_r, \qquad r \ge 1,$$

where  $h_r^{\xi} = f_r^{\xi}/g_r$ . But  $h_r^{\xi}$  will be indeterminate at infinity (if the support of  $B(\cdot)$ ) extends so far); it may be indeterminate at V if the support of  $B(\cdot)$  is bounded. In either case  $\lim_{u\to\infty} h_r^{\xi}(u)$  or  $\lim_{u\to V} h_r^{\xi}(u)$  can be evaluated, so that for all  $\xi$  and each  $r \ge 1$  the function  $h_r^{\xi}$  is well defined, nonnegative, and  $\Gamma_r$ -summable on  $X_r$ .

There remains r = 0. We need to show that  $(\pi^{\xi}, e_0) = 0$  whenever  $\Gamma_0 = 0$ . But  $\Gamma_0 = 1 - \rho$  which is never zero since we are concerned here only with the case  $\rho < 1$ . Hence the value of  $(\pi^{\xi}, e_0)$  does not concern us and we can write  $\pi^{\xi} \ll \Gamma$  or  $P(\xi, \cdot) \ll \Gamma(\cdot)$  for all  $\xi$  when  $\rho < 1$ .

Therefore, when  $\rho < 1$ , the sequence of partial sums  $Q_n(x, F) = n^{-1} \sum_{r=1}^{n} P_r(x, F)$  determined by (2) converges to a function Q(x, F) which is a stationary distribution for each x. But the argument of the last section showed that there is a unique stationary distribution  $\Gamma$  which is independent of the starting point x. Since, also, it is clear that  $Q(x, \mathfrak{X}) = 1$  for all x, we can aver that  $Q(x, F) \equiv \Gamma(F)$  for all x: that is,

(46) 
$$\lim_{n\to\infty}\frac{1}{n}\sum_{r=1}^{n}P_r(x,F)=\Gamma(F)$$

for all x.

I would like to thank Mr. David Kendall for his helpful comments and suggestions in the preparation of this paper.

#### APPENDIX

Another Markov chain associated with the system M/G/1 is the waiting time of the *r*th customer. In fact, if w(t) is the time a customer would have to wait if he entered the system at time *t*, then  $\{w(t), t \ge 0\}$  is a Markov process (Takács [10]). If we write  $w_r = w(t_r - 0)$ , for  $t_r \in \Pi$ , then  $\{w_r, r \ge 0\}$  is a homogeneous Markov chain and Lindley has shown [8] that if  $F_r(x) = P\{w_r \le x\}$ then

(47) 
$$F_{r+1}(x) = \int_0^\infty G(x-y)F_r(dy),$$

where

(48) 
$$G(t) = P\{v_n - u_n \leq t\} = \begin{cases} B(t) + e^{\alpha t} \int_t^\infty e^{-\alpha v} dB(v), & t \geq 0, \\ e^{\alpha t} B^*(\alpha), & t \leq 0. \end{cases}$$

Our phase space in this case is the nonnegative real line  $\mathfrak{R}$ , and (47) determines a transformation T on the space of functions of bounded variation to itself. As in section 2 the transition probability G(x - y) determines an operator  $\overline{T}$  on the space of bounded measurable functions to itself by the relation

(49) 
$$(\overline{T}g)(y) = \int_0^\infty g(x)G(dx - y).$$

The functions of the form  $e_s(\cdot) \equiv \exp(-s \cdot)$  are dense in  $C_0(\mathfrak{R})$  and pursuing our previous argument we can show that

(50) 
$$\overline{T}\hat{e}_s = \frac{sB^*(\alpha)}{s-\alpha}\,\hat{e}_\alpha - \frac{\alpha B^*(s)}{s-\alpha}\,\hat{e}_s.$$

It follows as before that T is the adjoint of an operator on  $C_0(\mathfrak{R})$  and so is not quasi-weakly compact. We can show also that  $\lambda = 1$  is the unique characteristic value of T and obtain the well-known stationary distribution

(51) 
$$(\overline{F}, e_s) = (1 - \rho) \left\{ 1 - \rho \frac{1 - B^*(s)}{bs} \right\}^{-1}$$

which exists when  $\rho < 1$ . Lastly,

(52) 
$$G(x - y) = P\{w_r \leq x | w_{r-1} = y\}$$

is absolutely continuous with respect to the distribution function  $\overline{F}(x)$ , and so the argument of section 4 may be repeated.

#### REFERENCES

- [1] D. R. Cox, "The analysis of non-Markovian stochastic processes by the inclusion of supplementary variables," *Proc. Cambridge Philos. Soc.*, Vol. 51 (1955), pp. 433-441.
- [2] J. L. DOOB, "Stochastic processes with an integral valued parameter," Trans. Amer. Math. Soc., Vol. 44 (1938), pp. 87-150.
- [3] D. P. GAVER, "Imbedded Markov chains analysis of a waiting-line process in continuous time," Ann. Math. Statist., Vol. 30 (1959), pp. 698-720.
- [4] S. KAKUTANI, "Ergodic theorems and the Markoff process with a stable distribution," Proc. Imp. Acad. Tokyo, Vol. 16 (1940), pp. 49-54.
- [5] J. KEILSON and A. KOOHARIAN, "On time dependent queueing processes," Ann. Math. Statist., Vol. 31 (1960), pp. 104-112.
- [6] D. G. KENDALL, "Some problems in the theory of queues," J. Roy. Statist. Soc., Ser. B, Vol. 13 (1951), pp. 151-185.
- [7] -----, "Quasi-compact operators in probability theory," to be published.
- [8] D. V. LINDLEY, "Theory of queues with a single server," Proc. Cambridge Philos. Soc., Vol. 48 (1952), pp. 277-289.
- [9] M. H. STONE, "The generalised Weierstrass approximation theorem," Math. Mag., Vol. 21 (1948), pp. 167-184 and 237-254.
- [10] L. TAKÁCS, "Investigation of waiting-time problems by reduction to Markov processes," Acta Math. Acad. Sci. Hungar., Vol. 6 (1955), pp. 101-129.
- [11] D. M. G. WISHART, "Queuing systems in which the discipline is 'last come, first served'," Operations Res., Vol. 8 (1960), pp. 591-599.
- [12] K. YOSIDA and S. KAKUTANI, "Operator-theoretical treatment of Markoff process and mean ergodic theorem." Ann. of Math., Vol. 42 (1941), pp. 188-228.