AN APPLICATION OF ERGODIC THEOREMS IN THE THEORY OF QUEUES

DAVID M. G. WISHART
UNIVERSITY of BIRMINGHAM

1. Introduction

We establish some notation: $\left\{\boldsymbol{Z}_{k}, k \geqq 0\right\}$ is a homogeneous Markov chain taking its values in a locally compact Hausdorff space X; we denote by Σ the σ-algebra of subsets of X generated by the open sets; $c a(\Sigma)$ is the Banach space of totally finite regular measures on Σ; and $C_{0}(X)$ is the Banach space of realvalued, bounded, continuous functions on X which vanish at infinity. If $\Phi_{k} \in c a(\Sigma)$ is the probability measure of Z_{k} then there exists a bounded linear operator T on $c a(\Sigma)$ into itself such that $\Phi_{k+1}=T \Phi_{k}$. If this operator can be represented by a real-valued function P on the product space $X \times \Sigma$ with the properties
(a) $0 \leqq P(x, F) \leqq P(x, \mathfrak{X})=1$ for all $x \in \mathscr{X}, F \in \Sigma$;
(b) for each $x \in X, P(x, \cdot) \in c a(\Sigma)$;
(c) ${ }^{\mathbf{v}}$ for each $F \in \Sigma, P\left(\cdot, F^{\prime}\right)$ is Σ-measurable;
then the mapping of $c a(\Sigma)$ into itself takes the form

$$
\begin{equation*}
\Phi_{k+1}\left(F^{\prime}\right)=\int_{\mathscr{X}} \Phi_{k}(d x) P\left(x, F^{\prime}\right) \tag{1}
\end{equation*}
$$

for each $F \in \Sigma$. We define inductively a sequence of real-valued functions $P_{r}(\cdot, \cdot)$ on $\boldsymbol{X} \times \Sigma$ by the relations

$$
\begin{equation*}
P_{r+1}(x, F)=\int_{\mathscr{C}} P_{r}(x, d y) P_{1}(y, F) \tag{2}
\end{equation*}
$$

$$
P_{1}(x, F) \equiv P(x, F)
$$

We may identify the conditional probability $P\left\{Z_{k+r} \in F \mid Z_{k}=x\right\}$ with the function $P_{r}(x, F)$, so that the r th iterate of the operator T may be written

$$
\begin{equation*}
\left(T^{r} \Phi\right)\left(F^{\prime}\right)=\int_{\mathscr{C}} \Phi(d x) P_{r}(x, F) \tag{3}
\end{equation*}
$$

A principal problem of ergodic theory has been to determine conditions under which the sequence of operators $n^{-1} \sum_{r=0}^{n-1} T^{r}$ converges in some sense. The
underlying Banach space on which T is defined induces various topologies on the space of bounded linear operators. Since the norm of an arbitrary operator S is well defined by $\|S\|=\sup _{\mu}\left\|S_{\mu}\right\| /\|\mu\|$ we can ask whether there exists a bounded linear operator T_{1} such that $\lim _{n \rightarrow \infty}\left\|n^{-1} \sum_{r=0}^{n-1} T^{r}-T_{1}\right\|=0$. A weaker convergence requires the existence of an operator T_{1} such that $\lim _{n \rightarrow \infty}\left\|\left(\tilde{n}^{-1} \sum_{r=0}^{n-1} T^{r}\right) \mu-T_{1} \mu\right\|=0$ for each $\mu \in c a(\Sigma)$. Yosida and Kakutani [12] call these the uniform ergodic theorem and the mean ergodic theorem respectively, and they have proved that
(I) the uniform ergodic theorem holds if T is a quasi-strongly compact operator, that is, if there exist a compact operator V and an integer p such that $\left\|T^{p}-V\right\|<1$;
(II) the mean ergodic theorem holds if T is a quasi-weakly compact operator, that is, if there exist a weakly compact operator V and an integer p such that $\left\|T^{p}-V\right\|<1$.

If an operator T is (weakly) compact then it satisfies condition (II) I automatically. The problem of identifying a quasi-weakly compact operator is still open. In this connection Kendall has shown [7] that if T is a bounded linear operator on $c a(\Sigma)$ into itself which sends positive elements into positive elements of equal norm, and if T is the adjoint of an operator on $C_{0}(X)$, then T is not quasi-weakly compact.

In section 2 we shall illustrate this theorem by means of an example from the theory of queues. Yet, having exhibited an operator T to which the theorems of Yosida and Kakutani do not apply, we may still ask if there is not some other sense in which the sequence of operators $n^{-1} \sum_{r=0}^{n-1} T^{r}$ converges. In section 3 we shall examine further our operator and show that (if the system is subject to some small restraint) it possesses a unique stationary distribution Γ. Then the ergodic theorem for Markov chains holds without any further restrictions on the transition probability $P(\cdot, \cdot)$.

Theorem (Doob [2]-Kakutani [4]). For each $B \in \Sigma$ there exists a set $E_{B} \in \Sigma$ such that $\Gamma\left(E_{B}\right)=0$ and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{r=1}^{n} P_{r}\left(x_{0}, B\right)=Q\left(x_{0}, B\right) \tag{4}
\end{equation*}
$$

for $x_{0} \notin E_{B}$, where Q is almost everywhere bounded, nonnegative, Σ-measurable, and invariant in the sense that $Q(y, B)=\int_{\mathscr{C}} P(y, d z) Q(z, B)$ for Γ-almost all y.

In section 4 we shall show that for our queuing example the transition probability $P(x, \cdot)$ is absolutely continuous with respect to the stationary distribution $\Gamma(\cdot)$; then the limit (4) becomes universal in x_{0} and the set function $Q\left(x_{0}, \cdot\right)$ is a stationary distribution for all x_{0}.

2. The transition operator

We shall discuss the queuing system usually denoted by $M / G / 1$ whose primary characteristics are:
(i) the interarrival intervals, u_{n}, are assumed to be independent and identically distributed according to the law $d A(u) \equiv \exp (-\alpha u) \alpha d u$, where $0<u<\infty$;
(ii) the service times, v_{n}, are assumed to be independent of each other and of the u_{n}, and to be identically distributed according to the law $d B(v)$, where $0<v<\infty ; B(0+)=0$. It will be found advisable to restrict the support D of $B(\cdot)$. If $B(V)=1$ and $B(V-\epsilon)<1$ for some finite V and all $\epsilon>0$, then we define D as the closed interval $[0, V]$; if on the other hand $B(V)<1$ for every finite V we take D as the half-closed real line $[0, \infty)$.
We shall assume that $0<\alpha<\infty$, and $0<b \equiv \int v d B(v)<\infty$. The traffic intensity of this system is then defined to be $\rho \equiv \alpha b$. (Recent descriptions of this system have been given by Cox [1], Gaver [3], Kendall [6], Takács [10], and Wishart [11].)

Our discussion will center on the stochastic process $\{[N(t), y(t)], t \geqq 0\}$ where $N(t)$ is the number of customers in the system at time t and $y(t)$ is the unexpended service time of the customer receiving service at time t. This process takes its values in the phase space
(5) $\quad X=\{(r, x): r=0,1,2, \cdots ; x=0$ when $r=0$, and $x \in D$ otherwise $\}$, which was also introduced by Keilson and Kooharian [5]. We define certain special subsets $X_{r} \subset \mathcal{X}: X_{r} \equiv\{(r, x): x \in D\}$ for $r \geqq 1 ; X_{0} \equiv\{(0,0)\}$. The general subset of X is then of the form $F=\bigcup F_{r}$ where $F_{r} \subset X_{r}$. We take as the open sets of X those sets F whose components F_{r} are open in the usual topology for X_{r}. The compact sets in this topology are those sets F which are the union of a finite number of sets F_{r} compact in the usual topology for X_{r} (that is, F_{r} closed and bounded in X_{r}). With this topology X is a locally compact Hausdorff space. We shall denote by $\Sigma\left(\Sigma_{r}\right)$ the class of Borel subsets of $\mathcal{X}\left(X_{r}\right)$: that is, the smallest σ-algebra of subsets of $\mathscr{X}\left(X_{r}\right)$ containing the open sets.

We introduce now a class of bounded continuous functions on X which vanish at infinity. For any real-valued function f on X we define functions f_{r} on X_{r} by the relations $f[(0,0)]=f_{0}, f\left[\left(r, x_{r}\right)\right]=f_{r}\left(x_{r}\right)$. If we require that $f_{r} \in C_{0}\left(X_{r}\right)$ with the usual supremum norm, and $\lim _{r \rightarrow \infty}\left\|f_{r}\right\|=0$, and if we write $f \equiv\left[f_{0}, f_{1}, f_{2}, \cdots\right]$ with linear operations defined termwise, then the linear set thus defined is complete in the topology generated by the norm $\|f\|=\max \left\{\left|f_{0}\right|\right.$, $\left.\sup _{r \geqq 1}\left\|f_{r}\right\|\right\}$. It follows from the condition $\lim _{r \rightarrow \infty}\left\|f_{r}\right\|=0$ that the functions of this set vanish at infinity, since if we are given $\epsilon>0$ we can find N such that $\left\|f_{r}\right\|<\epsilon$ for all $r>N$ and therefore the set $\left\{(r, x): f_{r}(x) \geqq \epsilon\right\}$ is the union of at most N compact subsets $F_{r} \subset X_{r}$: that is, $\left\{(r, x): f_{r}(x) \geqq \epsilon\right\}$ is a compact subset of X. We shall denote this normed linear space of bounded continuous functions on X by $C_{0}(\mathbb{X})$.

Because of the simplicity of the negative exponential input we shall make extensive use of the linear subset $\mathcal{E} \subset C_{0}(X)$ spanned by functions of the form

$$
\begin{equation*}
e=\left[1, z e^{-s x_{1}}, z^{2} e^{-s x_{2}}, z^{3} e^{-s x_{3}}, \cdots\right], \tag{6}
\end{equation*}
$$

where $\left(r, x_{r}\right) \in X_{r}$ and s, z are real numbers satisfying $0<s<\infty, 0 \leqq z<1$. If

$$
\begin{equation*}
e^{\prime}=\left[1, z_{1} e^{-s^{\prime} x_{1}}, z_{1}^{2} e^{-s^{\prime} x_{2}}, \cdots\right] \tag{7}
\end{equation*}
$$

we define ring multiplication in ε by the convention

$$
\begin{equation*}
e e^{\prime}=\left[1,\left(z z_{1}\right) e^{-\left(s+s^{\prime}\right) x_{1}},\left(z z_{1}\right)^{2} e^{-\left(s+s^{\prime}\right) x_{2}}, \cdots\right] \tag{8}
\end{equation*}
$$

and with this definition ε is an algebra. The elements of ε separate points in the sense that if $\left(n_{1}, y_{1}\right) \neq\left(n_{2}, y_{2}\right)$ we can find an $e \in \mathcal{E}$ such that $z^{n_{1}} e^{-s y_{n}} \neq z^{n_{2}} e^{-s y_{2}}$. Finally we observe that the elements of ε have no common zero other than the point at infinity of \mathscr{X}. Hence the elements of the closure of \mathcal{E} (in the strong topology on $C_{0}(\mathbb{X})$) have no other common zero, and so, by an appeal to the Stone-Weierstrass theorem [9], we can assert that ε is dense in $C_{0}(\mathcal{X})$ in the strong topology.

The space $\left[C_{0}(X)\right]^{*}$ adjoint to $C_{0}(x)$ is the space $c a(\Sigma)$ of finite regular measures on Σ. We may represent an element $\Psi \in c a(\Sigma)$ in vector form $\Psi=\left[\Psi_{0}\right.$, $\left.\Psi_{1}, \Psi_{2}, \cdots\right]$, where $-\infty<\Psi_{0}<\infty$ and $\Psi_{r} \in c a\left(\Sigma_{r}\right)$ with the usual norm $\left\|\Psi_{r}\right\|=$ total variation of Ψ_{r} over Σ_{r}. Then the norm of Ψ is given by $\|\Psi\|=$ $\left|\Psi_{0}\right|+\sum_{r=1}^{\infty}\left\|\Psi_{r}\right\|<\infty$. We shall use the notation (Ψ, f) for the value at the point $f \in C_{0}(\mathbb{X})$ of the linear functional Ψ which is isomorphic to the measure $\Psi \in c a(\Sigma):(\Psi, f)=\Psi_{0} f_{0}+\sum_{r=1}^{\infty}\left(\Psi_{r}, f_{r}\right) \quad$ where $\quad\left(\Psi_{r}, f_{r}\right)=\int_{X_{r}} f_{r} d \Psi_{r}$. The symbol \hat{f} will denote the element of $\left[C_{0}(x)\right]^{* *}$ which is isomorphic to the element $f \in C_{0}(x)$ under the natural mapping $(\Psi, f)=(\hat{f}, \Psi)$ for all Ψ, and $\hat{C}_{0}(X)$ will denote the natural embedding of $C_{0}(\mathbb{X})$ in $\left[C_{0}(X)\right]^{* *}$. If e is an element of ε we shall write $\psi(s, z)=(\Psi, e)$.

Lastly we observe that if μ, ν are elements of $c a(\Sigma)$, then μ is absolutely continuous with respect to ν if and only if μ_{r} is absolutely continuous with respect to ν_{r} for all r. We shall use Halmos' notation and write $\mu \ll \nu$ if and only if $\mu_{r} \ll \nu_{r}$ for all r.

It was noted by D. G. Kendall [6] that the process [$N(t), y(t)$] is Markovian for all $t \geqq 0$. We have investigated elsewhere its behavior in continuous time [11]. In this paper we shall confine our attention to the set of arrival epochs

$$
\begin{equation*}
\Pi=\left\{t_{k}: N\left(t_{k}\right)=N\left(t_{k}-0\right)+1, k=0,1,2, \cdots\right\} \tag{9}
\end{equation*}
$$

taking $t_{0}=0$. Then, writing

$$
\begin{equation*}
\left[N_{k}, y_{k}\right]=\left[N\left(t_{k}-0\right), y\left(t_{k}-0\right)\right], \quad t_{k} \in \Pi \tag{10}
\end{equation*}
$$

the Markov chain $\left\{\left[N_{k}, y_{k}\right], k=0,1,2, \cdots\right\}$ is homogeneous with a transition operator on $c a(\Sigma)$ to itself which we shall denote by T : that is, if $\Phi_{k} \in c a(\Sigma)$ is the probability measure of [N_{k}, y_{k}] then Φ_{k+1}, the probability measure of [N_{k+1}, $\left.y_{k+1}\right]$, is given by $\Phi_{k+1}=T \Phi_{k}$. It is our purpose to show that T is the adjoint of an operator on $C_{0}(x)$.

We may represent this operator by a real-valued function P on the product space $x \times \Sigma$ with the properties (a) to (c) enumerated in the introduction, so
that the mapping of $c a(\Sigma)$ into itself which we have defined above takes the form (1).

The function P also determines an operator \bar{T} on the linear space $\mathfrak{T} \subset[\mathrm{ca}(\Sigma)]^{*}$ of bounded measurable functions into itself by the relation

$$
\begin{equation*}
g \rightarrow \bar{T} g=\int_{X} P(\cdot, d x) g(x), \quad g \in \mathfrak{N} \tag{11}
\end{equation*}
$$

and this mapping is the contraction to \mathfrak{N} of the mapping T^{*} on [ca($\left.\left.\Sigma\right)\right]^{*}$ to itself defined by $(h, T \mu)=\left(T^{*} h, \mu\right)$ for $h \in[c a(\Sigma)]^{*}$ and every $\mu \in c a(\Sigma) . \bar{T}$ is a positive operator of norm 1 leaving invariant the function which is constant everywhere on x.

Since the Markov chain is homogeneous it will be sufficient to investigate a single relation, $\Phi_{1}=T \Phi_{0}$, say. The suffixes may be dropped and we shall from now on write Φ and Ψ for Φ_{0} and Φ_{1} respectively, so that $\Psi=T \Phi$. In the notation established above we have $\varphi(s, z)=(\Phi, e)$ and $\psi(s, z)=(\Psi, e)$ for $e \in \varepsilon$. It is illuminating to cast these functions into the same form; we have

$$
\begin{equation*}
\varphi(s, z)=(\Phi, e)=(\hat{e}, \Phi) \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
\psi(s, z)=(\Psi, e)=(T \Phi, e)=(\hat{e}, T \Phi)=\left(T^{*} \hat{e}, \Phi\right) \tag{13}
\end{equation*}
$$

Since $\hat{e} \in \mathfrak{M}$, we have $T^{*} \hat{e}=\bar{T} \hat{e}$ which, by equation (11), we can write as

$$
\begin{equation*}
T \hat{e}=\mathbf{E}\left[z^{N_{1}} e^{-s y_{1}} \mid\left[N_{0}, y_{0}\right]\right] . \tag{14}
\end{equation*}
$$

The last expression for $\psi(s, z)$ is still not very useful. However, $T \hat{e}$ is a function which we can calculate and we shall show that $\bar{T} \hat{\varepsilon} \in \hat{\varepsilon}$. Since ε is dense in $C_{0}(x)$ we conclude that T^{*} leaves $\hat{C}_{0}(X)$ invariant in $\left[C_{0}(X)\right]^{* *}$. Consequently there is an operator S on $C_{0}(X)$ to itself such that $S^{*}=T$, and the element $T \hat{e}$ in $\hat{C}_{0}(\mathbb{X})$ is isomorphic to $S e$ in $C_{0}(\mathscr{X})$. Hence the expression (13) for $\psi(s, z)$ may be rewritten as $\psi(s, z)=(T \Phi, e)=(\Phi, S e)$ which we now proceed to compute.

Underlying the present study is the product space

$$
\begin{equation*}
x \times u_{1} \times u_{2} \times \cdots \times v_{1} \times v_{2} \times \cdots, \tag{15}
\end{equation*}
$$

where \mathscr{X} is the range space of $\left[N_{0}, y_{0}\right], \mathcal{U}_{1}$ is the range space of the random variable u_{i} and is a copy of the real line, and v_{j} is the range space of the random variable v_{j} and is a copy of D. The distribution of $\left[N_{0}, y_{0}\right]$ is Φ so we may set up the product measure

$$
\begin{equation*}
\Phi \times A \times A \times \cdots \times B \times B \times \cdots \tag{16}
\end{equation*}
$$

since all the random variables are independent.
In order to evaluate

$$
\begin{equation*}
\mathbf{E}\left[z^{N_{1}} e^{-s y_{1}} \mid N_{0}=m, y_{0}=x\right], \tag{17}
\end{equation*}
$$

we suppose first that $m \geqq 1$, and we write $V_{j}=v_{1}+\cdots+v_{j}$. Then t_{1} may occur in one of the following nonoverlapping intervals $(0, x),\left(x, x+v_{1}\right),\left(x+v_{1}\right.$, $\left.x+v_{1}+v_{2}\right), \cdots,\left(x+V_{j}, x+V_{i+1}\right), \cdots,\left(x+V_{m}, \infty\right)$; with [N_{1}, y_{1}] taking
the corresponding values $\left(m+1, x-u_{1}\right),\left(m, x+v_{1}-u_{1}\right),\left(m-1, x+v_{1}+\right.$ $\left.v_{2}-u_{1}\right), \cdots,\left(m-j, x+V_{j+1}-u_{1}\right), \cdots,(0,0)$. We can therefore write down the expectation of $z^{N_{1}} \exp \left(-s y_{1}\right)$ with respect to the distribution of u_{1} as a sum of terms

$$
\begin{align*}
& \int_{0}^{x} z^{m+1} e^{-s\left(x-u_{1}\right)} e^{-\alpha u_{1}} \alpha d u_{1}+\int_{x}^{x+v_{1}} z^{m} e^{-s\left(x+v_{1}-u_{1}\right)} e^{-\alpha u_{1}} \alpha d u_{1} \tag{18}\\
& \quad+\cdots+\int_{x+V_{m-1}}^{x+V_{m}} z^{1} e^{-s\left(x+V_{m}-u_{1}\right)} e^{-\alpha u_{1}} \alpha d u_{1}+\int_{x+V_{m}}^{\infty} z^{0} e^{-\alpha u_{1}} \alpha d u_{1} \\
& \quad=z^{m+1} \frac{\alpha}{\alpha-s}\left(e^{-s x}-e^{-\alpha x}\right)+z^{m} \frac{\alpha}{\alpha-s} e^{-\alpha x}\left(e^{-s v_{1}}-e^{-\alpha v_{1}}\right) \\
& \quad+\cdots+z \frac{\alpha}{\alpha-s} e^{-\alpha x-\alpha V_{m-1}\left(e^{-s v_{m}}-e^{-\alpha v_{m}}\right)+z^{0} e^{-\alpha x-\alpha V_{m}} .}
\end{align*}
$$

If we now take the expectation with respect to the product measure in the space $v_{1} \times \cdots \times V_{m}$ we obtain

$$
\begin{align*}
& \mathbf{E}\left[z^{N_{1}} e^{-s y_{1}} \mid N_{0}=m, y_{0}=x\right] \tag{19}\\
& \qquad \begin{array}{l}
=z^{m+1} \frac{\alpha}{\alpha-s}\left(e^{-s x}-e^{-\alpha x}\right) \\
\quad+\frac{\alpha}{\alpha-s} e^{-\alpha x}\left[B^{*}(s)-B^{*}(\alpha)\right] \sum_{r=1}^{m} z^{r}\left[B^{*}(\alpha)\right]^{m-r}+\left[B^{*}(\alpha)\right]^{m} e^{-\alpha x} \\
\quad B^{*}(s)=\int_{0}^{\infty} e^{-s v} d B(v) .
\end{array}
\end{align*}
$$

This is for $m \geqq 1$. If $m=0, t_{1}$ may occur in ($0, v_{0}$) or in (v_{0}, ∞), so that [N_{1}, y_{1}] may take the values $\left(1, v_{0}-u_{1}\right)$ or $(0,0)$ and we have therefore two terms only,

$$
\begin{equation*}
z^{1} \int_{0}^{v_{0}} e^{-s\left(v_{0}-u_{1}\right)} e^{-\alpha u_{1}} \alpha d u_{1}+z^{0} \int_{v_{0}}^{\infty} e^{-\alpha u_{1}} \alpha d u_{1} \tag{20}
\end{equation*}
$$

and when we integrate with respect to v_{0} we obtain

$$
\begin{equation*}
\mathbf{E}\left[z^{N_{1}} e^{-s y_{1}} \mid N_{0}=y_{0}=0\right]=z \frac{\alpha}{\alpha-s}\left[B^{*}(s)-B^{*}(\alpha)\right]+B^{*}(\alpha) \tag{21}
\end{equation*}
$$

If we write $e_{s, z}$ for e and e_{0} for the vector $[1,0,0, \cdots]$ then the equations (18) and (21) may be written together in the form

$$
\begin{align*}
T^{*} \hat{e}_{s, z}=\frac{z \alpha}{\alpha-s}\left(\hat{e}_{s, z}-\hat{e}_{\alpha, z}\right) & +\hat{e}_{\alpha, B^{*}(\alpha)} \tag{22}\\
& +\frac{z \alpha}{\alpha-s} \frac{B^{*}(s)-B^{*}(\alpha)}{z-B^{*}(\alpha)}\left(\hat{e}_{\alpha, z}-\hat{e}_{\alpha, B^{*}(\alpha)}\right. \\
& +\left\{\frac{z \alpha}{\alpha-s}\left[B^{*}(s)-B^{*}(\alpha)\right]+B^{*}(\alpha)-1\right\} \hat{e}_{0}
\end{align*}
$$

Hence $T^{*} \hat{e}$ is an element of $\hat{\varepsilon}$ and since the e are dense in $C_{0}(X)$ it follows that T^{*} leaves $\hat{C}_{0}(x)$ invariant in $\left[C_{0}(x)\right]^{* *}$. If we write S for the contraction of T^{*} to
$\hat{C}_{0}(X)$ transfered to $C_{0}(X)$, then S (being a contraction of T^{*}) is a bounded linear operator. Also, for all $f \in C_{0}(X)$

$$
\begin{equation*}
\left(S^{*} \Phi, f\right)=(\Phi, S f)=(\widehat{S f}, \Phi)=\left(T^{*} \hat{f}, \Phi\right)=(\hat{f}, T \Phi)=(T \Phi, f) \tag{23}
\end{equation*}
$$

holds. Therefore $S^{*}=T$, and the element $T^{*} \hat{e}$ which we have calculated is isomorphic to the element $S e$ in $C_{0}(X)$.

We have therefore shown that the transition operator T associated with the Markov chain $\left\{\left[N_{k}, y_{k}\right], k \geqq 0\right\}$ is not quasi-weakly compact and consequently that the ergodic theorems of Yosida and Kakutani cannot be applied to this system.

3. The stationary distribution

Since $T^{*} \hat{e}$ is isomorphic with the element $S e$ in $C_{0}(X)$ we have seen that we may write $\psi(s, z)=$ ($\Phi, S e)$. Hence, regarding (16) as an operator equation in ε and taking the inner product with respect to Φ, we obtain

$$
\begin{align*}
\psi(s, z)=\frac{z \alpha}{\alpha-s}[\varphi(s, z) & -\varphi(\alpha, z)]+\varphi\left[\alpha, B^{*}(\alpha)\right] \tag{24}\\
& +\frac{z \alpha}{\alpha-s} \frac{B^{*}(s)-B^{*}(\alpha)}{z-B^{*}(\alpha)}\left\{\varphi(\alpha, z)-\varphi\left[\alpha, B^{*}(\alpha)\right]\right\} \\
& +\phi_{0}\left\{\frac{z \alpha}{\alpha-s}\left[B^{*}(s)-B^{*}(\alpha)\right]+B^{*}(\alpha)-1\right\}
\end{align*}
$$

where $\phi_{0}=\Phi[(0,0)]=\left(\Phi, e_{0}\right)$.
We seek solutions (if any) of the equation $\psi=\lambda \varphi$. The existence of a solution of this equation implies the existence of an element $\Phi \in c a(\Sigma)$ such that ($T \Phi-\lambda \Phi, e)=0$ for all $e \in \varepsilon$, and since ε is dense in $C_{0}(X)$ we conclude that Φ satisfies $T \Phi=\lambda \Phi$. If, further, $\Phi(F) \geqq 0$ for all $F \in \Sigma$, and $0<\Phi(X)<\infty$ then Φ is readily normalized to a probability measure.

We set aside for the moment the question of positivity and investigate the existence of solutions of the equation $\psi=\lambda \varphi$ which satisfy the condition $0<\varphi(0,1)<\infty$. Putting first $z=0$ we obtain $\varphi\left(\alpha, B^{*}(\alpha)\right)=\phi_{0}[1+\lambda-$ $\left.B^{*}(\alpha)\right]$, and inserting this in (24) we have

$$
\begin{align*}
&\left(\lambda-\frac{z \alpha}{\alpha-s}\right) \varphi(s, z)=\phi_{0}\left\{\frac{z \alpha}{\alpha-s}\left[B^{*}(s)-B^{*}(\alpha)\right] \frac{z-1-\lambda}{z-B^{*}(\alpha)}+\lambda\right\} \tag{25}\\
&+\varphi(\alpha, z) \frac{z \alpha}{\alpha-s} \frac{B^{*}(s)-z}{z-B^{*}(\alpha)}
\end{align*}
$$

The function $\varphi(s, z)$ is a regular function of the complex variables s and z in the region defined by the inequalities $\operatorname{Re} s>0$, and $|z|<1$. Consequently the right side of (25) must be zero at points s_{λ} defined by $s_{\lambda}=\alpha(\lambda-z) / \lambda$; substitution in (25) enables us now to determine $\varphi(\alpha, z)$. We obtain

$$
\begin{equation*}
0=\phi_{0}\left\{\lambda\left[B^{*}\left(s_{\lambda}\right)-B^{*}(\alpha)\right] \frac{z-1-\lambda}{z-B^{*}(\alpha)}+\lambda\right\}+\varphi(\alpha, z) \lambda \frac{B^{*}\left(s_{\lambda}\right)-z}{z-B^{*}(\alpha)} \tag{26}
\end{equation*}
$$

and introducing this into (19) we derive finally

$$
\begin{equation*}
\left(\lambda-\frac{z \alpha}{\alpha-s}\right) \frac{\varphi(s, z)}{\phi_{0}}=\lambda+\frac{z \alpha}{\alpha-s}\left\{(z-\lambda) \frac{B^{*}(s)-B^{*}\left(s_{\lambda}\right)}{z-B^{*}\left(s_{\lambda}\right)}-1\right\} \tag{27}
\end{equation*}
$$

Let us now assume that $\lambda \neq 1$, and impose the condition $0<\varphi(0,1)<\infty$; equation (27) yields $(\lambda-1) \varphi(0,1) / \phi_{0}=\lambda+(1-\lambda-1)=0$, which contradicts our assumption. There exist therefore no characteristic values of T other than $\lambda=1$ which can give probabilistically meaningful results. When $\lambda=1$ we have

$$
\begin{equation*}
\varphi(s, z)=\phi_{0}\left\{1+\alpha z \frac{1}{1-\frac{1-K(z)}{1-z}} \frac{B^{*}\left(s_{1}\right)-B^{*}(s)}{s-s_{1}}\right\} \tag{28}
\end{equation*}
$$

where we have written

$$
\begin{equation*}
K(z)=B^{*}\left(s_{1}\right)=\int_{0}^{\infty} e^{-\alpha(1-z) v} d B(v) \tag{29}
\end{equation*}
$$

We note that $K(1)=1$, and $K^{\prime}(1)=\alpha b=\rho$. We also have obtained the function $\varphi(s, z)$ in [11] as

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \mathrm{E}\left[z^{N(t)} e^{-s y(t)}\right] . \tag{30}
\end{equation*}
$$

The power series expansion of $K(z)$ has all its coefficients positive and $K(0)=B^{*}(\alpha)>0$, so that for real z it is a monotonically increasing function passing through the point $(1,1)$. If $\rho>1$, then $K^{\prime}(1)=\rho>1$, and there exists a real zero of the function $K(z)-z$ at a point $z_{0}<1$, say. Rouche's theorem shows that $z=z_{0}$ is the only zero of $K(z)-z$ properly inside the unit circle. The right side of (28) has therefore a pole at $z=z_{0}$, whereas the left side, by construction, is regular for all z inside the unit circle. It is not therefore possible that there exists a stationary distribution when $\rho>1$.

We shall show that when $\rho \leqq 1$ the right side of (28) is a regular function of z everywhere inside the unit circle. For

$$
\begin{equation*}
G(z) \equiv \frac{1-K(z)}{1-z}=\sum_{r=0}^{\infty} z^{r}\left(k_{r+1}+k_{r+2}+\cdots\right) \tag{31}
\end{equation*}
$$

is a power series with positive coefficients and

$$
\begin{equation*}
G(1)=\lim _{z \rightarrow 1} \frac{1-K(z)}{1-z}=\rho \leqq 1 . \tag{32}
\end{equation*}
$$

When $\rho<1$ it follows immediately from Rouche's theorem that $1-G(z)$ has no zeros inside the unit circle, since on $|z|=1$, we have $|G(z)| \leqq G(1)<1$. When $\rho=1$ we observe that $G(1-\epsilon)<1$ for every $\epsilon>0$, from which we can conclude that $1-G(z)$ has no zero inside any circle $|z|=1-\epsilon<1$. Hence $1-G(z)$ is regular and nonzero inside the unit circle when $\rho \leqq 1$ and therefore
$[1-G(z)]^{-1}$ is also regular inside the unit circle when $\rho \leqq 1$, and our assertion is proved.

We have thus obtained an invariant function φ corresponding to a finite measure which we will denote by $\Gamma \in c a(\Sigma)$. For this function to be probabilistically meaningful we must normalize it, and this condition enables us to evaluate ϕ_{0} (which from now on we must call Γ_{0}). We require $\varphi(0,1)=1:$ then we obtain from (22)

$$
\begin{equation*}
\Gamma_{0}=1-\rho, \quad \rho \leqq 1 \tag{33}
\end{equation*}
$$

(Note. Although we have shown that (22) is a regular function of z for $\rho \leqq 1$, the function $\varphi(s, z)$ can only be said to exist when $\rho<1$.)

We shall now establish the positivity of the set function Γ. We consider $\varphi(s, z)$ given by (28) in the region of the real (s, z)-plane defined by the inequalities $0 \leqq z<1, \alpha<s<\infty$. Since $s_{1}=\alpha(1-z)$ we have also $0<s_{1} \leqq \alpha<s$. We saw above that $G(z)=[1-K(z)] /(1-z)$ is a power series with positive coefficients, and $G(1)=\rho<1$. Then for $0 \leqq z<1$ we have $G(z) \leqq \rho<1$, so that

$$
\begin{equation*}
(1-\rho)\left\{1-\frac{1-K(z)}{1-z}\right\}^{-1}=P(z)=\sum_{r=0}^{\infty} p_{r} z^{r} \tag{34}
\end{equation*}
$$

is absolutely convergent in the same half-open interval and has also positive coefficients. Further,

$$
\begin{align*}
\frac{B^{*}\left(s_{1}\right)-B^{*}(s)}{s-s_{1}} & =\int_{0}^{\infty} \frac{e^{-s s_{1}}-e^{-s v}}{s-s_{1}} d B(v)=\int_{0}^{\infty} e^{-s_{1} v} \frac{1-e^{-\left(s-s_{1}\right) v}}{s-s_{1}} d B(v) \tag{35}\\
& =\int_{0}^{\infty} e^{-s_{10}}\left\{\int_{0}^{v} e^{-\left(s-s_{1}\right) t} d t\right\} d B(v) \\
& =\int_{0}^{\infty} e^{-s t} d t \int_{t}^{\infty} e^{-s_{1}(v-t)} d B(v) \\
& =\int_{0}^{\infty} e^{-s t} d t \int_{0}^{\infty} e^{-\alpha(1-z) w} d B(w+t) \\
& =\int_{0}^{\infty} e^{-s t} d t \sum_{r=0}^{\infty} z^{r} \int_{0}^{\infty} \frac{(\alpha w)^{r}}{r!} e^{-\alpha w} d B(w+t) \\
& =\int_{0}^{\infty} e^{-s t} d t \sum_{r=0}^{\infty} z^{r} \beta_{r}(t)
\end{align*}
$$

say, where

$$
\begin{equation*}
\beta_{r}(t)=\int_{0}^{\infty} \frac{(\alpha w)^{r}}{r!} e^{-\alpha w} d B(w+t) \tag{36}
\end{equation*}
$$

Consequently, the r th component of Γ has a density which we can write in the form

$$
\begin{equation*}
d \Gamma_{r}(t)=\alpha \sum_{n=0}^{r-1} p_{r-n} \beta_{n}(t) d t, \quad 0 \leqq t<\infty ; r \geqq 1 \tag{37}
\end{equation*}
$$

$\beta_{n}(t)$ is positive for $0 \leqq t<\infty$ and we have shown that $P(z)$ has a power series
expansion with positive coefficients so that Γ_{r} has a positive density with respect to the Lebesgue measure on (X_{r}, Σ_{r}) for each $r \geqq 1$. If D is the finite closed interval $[0, V]$ then we define

$$
\begin{equation*}
\beta_{r}(t)=\int_{t}^{V} \frac{[\alpha(v-t)]^{r}}{r!} e^{-\alpha(v-t)} d B(v) . \tag{38}
\end{equation*}
$$

With this modification equation (38) remains correct for $0 \leqq t \leqq V$. (In this case it will be usual that $\beta_{r}(t)>0$ for $0 \leqq t<V$ but $\beta_{r}(V)=0$.) Also $\Gamma_{0}=$ $1-\rho$. Hence $\Gamma\left(F^{\prime}\right) \geqq 0$ for every $F \in \Sigma$, as was to be shown.

We have therefore shown in this section that
(i) $\lambda=1$ is the unique characteristic value of T;
(ii) there exist no solutions of $\psi=\varphi$ for $\rho \geqq 1$;
(iii) when $\rho<1$ there exists a unique solution of $\psi=\varphi$ given by (28) with $\Gamma_{0}=1-\rho$, and the inverse function Γ satisfies $T \Gamma=\Gamma$;
(iv) $\Gamma(F) \geqq 0$ for every $F \in \Sigma$.

4. Absolute continuity

In this section we prove that $P(\xi, \cdot)$ is absolutely continuous with respect to $\Gamma(\cdot)$ for every $\xi \subset \mathfrak{X}$.

Let us denote the transition probability $P(\xi, \cdot)$ as an element of $c a(\Sigma)$ by the vector $\pi^{\xi}=\left[\pi_{0}^{\xi}, \pi_{1}^{\xi}, \pi_{2}^{\xi}, \cdots\right]$. Then our assertion is proved when we have shown that $\pi_{r}^{\xi} \ll \Gamma_{r}$ for each r and every ξ. With this notation the expression (19) may be written as $\left(\pi^{\xi}, e\right)$ where $\xi=(m, x)$. Thus we must compare the coefficient of z^{r} in (19) with the coefficient of z^{r} in (28).

We have already seen that when $\rho<1$ there exists for each $r \geqq 1$ a Lebesgue summable function g_{r} such that

$$
\begin{equation*}
d \Gamma_{r}=g_{r} d x_{r}, \quad r \geqq 1, \tag{39}
\end{equation*}
$$

where $g_{r}(u)>0$ for $0 \leqq u<\infty$.
We treat the terms of (19) in the same way: the coefficient of z^{r}, where $1 \leqq r \leqq m$, is

$$
\begin{align*}
& \alpha e^{-\alpha x}\left[B^{*}(\alpha)\right]^{m \rightarrow r} \frac{B^{*}(\alpha)-B^{*}(s)}{s}-\alpha \tag{40}\\
& =\alpha e^{-\alpha x}\left[B^{*}(\alpha)\right]^{m-r} \int_{0}^{\infty} e^{-s t} d t \int_{0}^{\infty} e^{-\alpha w} d B(w+t)
\end{align*}
$$

so that

$$
\begin{equation*}
d \pi_{r}^{\xi}=f_{r}^{\xi} d x_{r} \tag{41}
\end{equation*}
$$

where

$$
\begin{equation*}
f_{\tilde{r}}^{\xi}(t)=\alpha e^{-\alpha x}\left[B^{*}(\alpha)\right]^{m-r} \int_{0}^{\infty} e^{-\alpha w} d B(w+t), \quad 0 \leqq t<\infty ; 1 \leqq r \leqq m, \tag{42}
\end{equation*}
$$

is everywhere positive [the modifications necessary when D is bounded will be clear from the remarks following equation (37)]; the coefficient of z^{m+1} is

$$
\begin{equation*}
\frac{e^{-\alpha x}-e^{-s x}}{s-\alpha}=\int_{0}^{x} e^{-s t} C^{-\alpha(x-t)} d t \tag{43}
\end{equation*}
$$

so that

$$
\begin{equation*}
d \pi_{m+1}^{\xi}=e^{-\alpha\left(x-x_{m+1}\right)} d x_{m+1}, \quad 0 \leqq x_{m+1} \leqq x \tag{44}
\end{equation*}
$$

Also $\pi_{r}^{\xi}=0$ for $r>m+1$. Hence

$$
\begin{equation*}
d \pi_{r}^{\xi}=h_{r}^{\xi} d \Gamma_{r}, \quad r \geqq 1 \tag{45}
\end{equation*}
$$

where $h_{r}^{\xi}=f_{r}^{\xi} / g_{r}$. But h_{r}^{ξ} will be indeterminate at infinity (if the support of $B(\cdot)$ extends so far); it may be indeterminate at V if the support of $B(\cdot)$ is bounded. In either case $\lim _{u \rightarrow \infty} h_{r}^{\xi}(u)$ or $\lim _{u \rightarrow V} h_{r}^{\xi}(u)$ can be evaluated, so that for all ξ and each $r \geqq 1$ the function h_{r}^{ξ} is well defined, nonnegative, and Γ_{r}-summable on X_{r}.

There remains $r=0$. We need to show that $\left(\pi^{\xi}, e_{0}\right)=0$ whenever $\Gamma_{0}=0$. But $\Gamma_{0}=1-\rho$ which is never zero since we are concerned here only with the case $\rho<1$. Hence the value of (π^{ξ}, e_{0}) does not concern us and we can write $\pi^{\xi} \ll \Gamma$ or $P(\xi, \cdot) \ll \Gamma(\cdot)$ for all ξ when $\rho<1$.

Therefore, when $\rho<1$, the sequence of partial sums $Q_{n}(x, F)=$ $n^{-1} \sum_{r=1}^{n} P_{r}(x, F)$ determined by (2) converges to a function $Q(x, F)$ which is a stationary distribution for each x. But the argument of the last section showed that there is a unique stationary distribution Γ which is independent of the starting point x. Since, also, it is clear that $Q(x, \mathscr{X})=1$ for all x, we can aver that $Q(x, F) \equiv \Gamma(F)$ for all x : that is,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{r=1}^{n} P_{r}(x, F)=\Gamma(F) \tag{46}
\end{equation*}
$$

for all x.
I would like to thank Mr. David Kendall for his helpful comments and suggestions in the preparation of this paper.

APPENDIX

Another Markov chain associated with the system $M / G / 1$ is the waiting time of the r th customer. In fact, if $w(t)$ is the time a customer would have to wait if he entered the system at time t, then $\{w(t), t \geqq 0\}$ is a Markov process (Takács [10]). If we write $w_{r}=w\left(t_{r}-0\right)$, for $t_{r} \in \Pi$, then $\left\{w_{r}, r \geqq 0\right\}$ is a homogeneous Markov chain and Lindley has shown [8] that if $F_{r}(x)=P\left\{w_{r} \leqq x\right\}$ then

$$
\begin{equation*}
F_{r+1}(x)=\int_{0}^{\infty} G(x-y) F_{r}(d y) \tag{47}
\end{equation*}
$$

where

$$
G(t)=P\left\{v_{n}-u_{n} \leqq t\right\}= \begin{cases}B(t)+e^{\alpha t} \int_{t}^{\infty} e^{-\alpha v} d B(v), & t \geqq 0 \tag{48}\\ e^{\alpha t} B^{*}(\alpha), & t \leqq 0\end{cases}
$$

Our phase space in this case is the nonnegative real line \mathscr{R}, and (47) determines a transformation T on the space of functions of bounded variation to itself. As in section 2 the transition probability $G(x-y)$ determines an operator \bar{T} on the space of bounded measurable functions to itself by the relation

$$
\begin{equation*}
(\bar{T} g)(y)=\int_{0}^{\infty} g(x) G(d x-y) \tag{49}
\end{equation*}
$$

The functions of the form $e_{s}(\cdot) \equiv \exp (-s \cdot)$ are dense in $C_{0}(\mathcal{R})$ and pursuing our previous argument we can show that

$$
\begin{equation*}
\bar{T} \hat{e}_{s}=\frac{s B^{*}(\alpha)}{s-\alpha} \hat{e}_{\alpha}-\frac{\alpha B^{*}(s)}{s-\alpha} \hat{e}_{s} \tag{50}
\end{equation*}
$$

It follows as before that T is the adjoint of an operator on $C_{0}(R)$ and so is not quasi-weakly compact. We can show also that $\lambda=1$ is the unique characteristic value of T and obtain the well-known stationary distribution

$$
\begin{equation*}
\left(F, e_{s}\right)=(1-\rho)\left\{1-\rho \frac{1-B^{*}(s)}{b s}\right\}^{-1} \tag{51}
\end{equation*}
$$

which exists when $\rho<1$. Lastly,

$$
\begin{equation*}
G(x-y)=P\left\{w_{r} \leqq x \mid w_{r-1}=y\right\} \tag{52}
\end{equation*}
$$

is absolutely continuous with respect to the distribution function $\bar{F}(x)$, and so the argument of section 4 may be repeated.

REFERENCES

[1] D. R. Cox, "The analysis of non-Markovian stochastic processes by the inclusion of supplementary variables," Proc. Cambridge Philos. Soc., Vol. 51 (1955), pp. 433-441.
[2] J. L. Doob, "Stochastic processes with an integral valued parameter," Trans. Amer. Math. Soc., Vol. 44 (1938), pp. 87-150.
[3] D. P. Gaver, "Imbedded Markov chains analysis of a waiting-line process in continuous time," Ann. Math. Statist., Vol. 30 (1959), pp. 698-720.
[4] S. Kakutani, "Ergodic theorems and the Markoff process with a stable distribution," Proc. Imp. Acad. Tokyo, Vol. 16 (1940), pp. 49-54.
[5] J. Killson and A. Kooharian, "On time dependent queueing processes," Ann. Math. Statist., Vol. 31 (1960), pp. 104-112.
[6] D. G. Kendall, "Some problems in the theory of queues," J. Roy. Statist. Soc., Ser. B, Vol. 13 (1951), pp. 151-185.
[7] -, "Quasi-compact operators in probability theory," to be published.
[8] D. V. Lindley, "Theory of queues with a single server," Proc. Cambridge Philos. Soc., Vol. 48 (1952), pp. 277-289.
[9] M. H. Stone, "The generalised Weierstrass approximation theorem," Math. Mag., Vol. 21 (1948), pp. 167-184 and 237-254.
[10] L. TakÁcs, "Investigation of waiting-time problems by reduction to Markov processes," Acta Math. Acad. Sci. Hungar., Vol. 6 (1955), pp. 101-129.
[11] D. M. G. Wishart, "Queuing systems in which the discipline is 'last come, first served'," Operations Res., Vol. 8 (1960), pp. 591-599.
[12] K. Yosida and S. Kakutani, "Operator-theoretical treatment of Markoff process and mean ergodic theorem." Ann. of Math., Vol. 42 (1941), pp. 188-228.

