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1. Introduction

A stochastic process is commonily used as a model in studying the behavior
of a random system through time. It will be convenient for us to take the sto-
chastic process {xtJ as discrete in time t = *, - 1, 0, 1, *-. Processes of inde-
pendent random variables are the simplest and most completely understood.
It is, however, clear that these are extremely limited in scope as models and
one must have recourse to dependent processes (the random variables x, not
independent) in order to have any power in description. For simplicity, let us
further restrict ourselves to processes that are stable through time, stationary
processes. For such processes the probabilities of events shifted through time
remain the same, that is, the probability

( 1) P JXth +h -< al,, * * *, Xt. +h _- an}

is independent of h. Such models occur fairly often in the physical sciences. If
mean properties of the process are to be capable of being estimated reasonably
well from part of a realization of the process, some form of asymptotic inde-
pendence for blocks of random variables of the process that are widely separated
must be satisfied. This is, in effect, the gist of many of the results in ergodic
theory. Two types of interesting problems are posed. The first of these is con-
cerned with reasonable notions of asymptotic independence and what types of proc-
esses satisfy them. The second is that of characterizing those processes {Xt} that can
bc constructed out of independent processes by a function an(d its shifts, that is,

(2) X't = A. - , it-l, it, 6+1, * * *)

where {it} is a process of independent random variables. Neither of these ques-
tions have elicited satisfactory answers. However, there are some small results
that do give insights into the problems. The object of this paper is a presentation
and discussion of a few of these limited results.

2. Mixing

Ergodicity itself might be thought of as a form of asymptotic independence.
However, the most obvious formulation of asymptotic independence is the
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stronger mixing condition. Suppose T is the shift (in time) operator associated
with the stationary process. The process is said to be mixing if
(3) P{A n TnB} -P{A}P{B}
as n -X oo for any two events A, B. The normal stationary processes are the
simplest stationary processes and Maruyama [6] has obtained a simple and
intuitive necessary and sufficient condition for such a process to be mixing. To
verify the mixing property, it is enough to verify property (3) for any two events
A, B determined by conditions on a finite number of the random variables xi.
MARUYAMA'S THEOREM. A necessary and sufficient condition for a normal sta-

tionary process to be mixing is that the covariance r8 = CoV (X?+a, XT) tend to zero
as Itl -X o.

It is clear that no generality is lost by assuming that the mean of the process
is zero. The necessity of the condition that rt -- 0 as tt7xc is then almost com-
pletely apparent. We approximate the random variables xT+t, x, by step func-
tions in the following way. Let
(4) A(k, e) = {wkE .x_T(w) < (k + 1)f}
and

01 if co E- A(k, e)
(5) CA(k,e)((v) = ifw>A(,E{O otherwise.
Set

K=N
(6) xTN')(X) = E kecA4(A,E)(w)

k=-N
Then for sufficiently large N
(7) E1X4NE)(w) - xT(w)l = Ejx(NE)(Ttc) - xt+,(w)l < 8,

Irt - ExTNe1(Ttw)x(NE)(w)1 _ Ejxj+,(w)x,.(w) - xT 1)(1t()X ME) (W)1 <8.
Since the mean of the process is zero, for N sufficiently large
(8) 7ExNe)(w)l = iEa4N.)(Ttw)I < a.
However by the mixing condition

N
(9) Ex(N-i (Ttw)x$N.E)(,) = F, kEjr:EICA k,,)(TtW)CAU,e)(,W)

=
_ kje2P[A(j, e) nl TtA(k, e)]

k,j= -N

N

E 1CjE11[A (j, e)] P[A (k, e)]
k,j=-N

- [EX ((D)]2.
But this limit relation coupled with the inequalities (7) indicate that

(10) fim IrgL < 36
Itl-

and since this is true for any 6, we have limll-1 rt = 0.
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The sufficiency of this condition follows just as easily. Let A, B be determined
by conditions on blocks of k successive random variables (these could in fact be
taken to be the same blocks if k is sufficiently large). Then

(11) P{A n TnB} = (2r)-klM-l12 f f exp (u, v)M-1(u, v)'}dudv,
A B

where u, v are two row k-vectors and (u, v) the 2k-vector formed by joining them.
The matrix M is the covariance matrix of two blocks of k successive random
variables of the process separated by n - k random variables. Write M in the
form

(12) M RQ R:)

where R1 is the k X k covariance matrix of a block of k successive random vari-
ables and R2 the k X k matrix of covariances of the one block of k with the
other block removed from it by n - k random variables (R2 is the transpose
of R2). The fact that rt -4 0 as Itl -+ oo implies that M-1 exists. It is in fact given
by
(13) M-1 (= )

with A = (R1 - R2RI'R2)-', C = (R - RERi-'R2)-, B = -R-1 R2C =
-AR2Ri 1. The matrix R1 is fixed since k is fixed. But R2 is a k X k matrix
whose entries are the covariances rt with Itl > n - k. They approach zero uni-
formly as n X so that R2 approaches the null matrix. Thus

(14) Af --- ( 0)

(15) P{A n TnB} (27r)-kJRlll f exp [uRli1u' + vRli'v']} du dv

= P{A}P{B}.
Stronger mixing conditions are sometimes invoked in deriving results like

central limit theorems for dependent processes. The following condition is an
example of such a strong mixing condition: Let A, B be any events determined by
conditions on the random variables Xk, k < m, and Xk, k 2 n, respectively with
n > m. The process {Xk} is said to satisfy the strong mixing condition M if

(I6) I{A l B} - P{A}P{B}l _ d(n - m)

for all such events A, B and some function d where d is a function on the positive
integers n that decreases to zero as n -- oo. Notice that such a mixing condition is
a uniform mixing condition in what we might call the distance n - m between
the events A, B.

Let {xk} be a stationary process with mean zero, Exk 0O, that satisfies the strong
mixing condition M. Further let the process satisfy the two moment conditions
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(17) E I E xjl2 = E (n-lkI)rk= h(n)--oo as n -*oo,
1 k=-n

n n
(18) E L xj14 = E Exj1xj,xj,xj,

j=1 ji=l

n
= E [rj-_j.rj,_j, + rj, jlrj,_j, + rji_j4rj,_j, + Pj2_j,j3_j,j4_j1]

ii=

= 3[h(n)]2 + E Pl,,a2,az TN(a,, a2, a3)
lail <n

= O[h(n)]2.
The sums _=J.x, can then be shown to be asymptotically and nontrivially
normally distributed when suitably normed as n -X o. Of course, the statement
of nontrivialness means that the limiting normal distribution does not have
variance zero. The proof of this limit theorem can be found in [7]. The follow-
ing two examples in part at least indicate the limits of the central limit theorem
cited above.
In the first example the process {Xk} is taken to be

(19) Xk = Ek - Ek-1

where the Ek are independent, identically distributed nonnormal random vari-
ables with finite 4th moment and vanishing 1st moment. Since E k=1 Xk = f- EO,
it is readily seen that h(n) does not diverge as n -+ o. Thus, we get a nonnormal
limiting distribution, namely that of el - Eo, without norming the sum at all.
The process certainly satisfies the strong mixing condition and moment condi-
tion (18) but not moment condition (17). The difficulty arises because the process
{Xk} has too little spectral mass in the vicinity of X = 0. Its spectral density is
f(X) = (1/27r)I - exp (-iX)12.

The second example has greater interest. Consider a normal process {yk} with
mean zero and covariance sequence rk = (1 + k2)-fy with y > 0. The spectral
density of the process {yk} is

(20) a(X) = X b(X + 2kr)
k=-X

where

(21) b(X) = b(IXI) = {(-y)}-2e - f0f,u--I(A + Xj)|1-'e-2M d,u.

The spectral density a(X) is continuous and bounded away from zero if
IXI > E > 0. If -y < 1/2, it has a singularity of the form IX12y-' in the vicinity of
X = 0. However, it should be noted that the process is in any case, purely non-
deterministic and therefore mixing in the ordinary sense. Let the process {XI}
be of the form Xk = y'-1. The covariance sequence of the process {Xk} is
rk= 2(1 + k2)-2y. We shall be interested in processes for which y < 1/4. The
spectral densityf(X) of {Xk} has a singularity of the form IXl4-1 in the neighbor-
hood of X = 0 as can be seen from (21). We shall see that n-w+27 _-1 xk has a
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limiting nionnormal distribution as n - cc. For the characteristic functioll of
nf1+2Y 'k= 1 Xk iS

(22) Il - 2itn-'+2,Rj-"12 exp {-in2Ytro} = exp {F_ (2itn-1+2,y)k sp (Rk)/k}

and

(23) (n 1+2,y)k sp (Rk)
n

= (n±l+2v)k ri:ri_2ri2-i3 ... ri,-
i=l1

f lxi - X21|271X2 - X3t12y ..X - X1L 2y dxi ... dXk
0

k

= Ck > O,

as n oo (here sp (R) denotes the trace of the matrix R). The characteristic
function of the limiting distribution is

(24) exp E (2it)k

the characteristic function of a nonnormal distribution. The curious aspect of
this example is that moment conditions 1 and 2 are satisfied. We must therefore
conclude that the strong mixing condition is not satisfied by {Xk}. But this means
that the normal process {yk} does not satisfy a strong mixing condition, since
{Xk} is derived from it by an instantaneous nonlinear filter, even though {yk} is
purely nondeterministic and hence mixing. This is rather surprising. It certainly
indicates that there would be a great deal of interest in a result that would character-
ize the Gaussian stationary processes that satisfy the strong mixing condition dis-
cussed in this section.

3. Stationary processes generated by independent random variables

Most of the stationary processes that arise in practice are generated from
independent identically distribution random variables by a linear or nonlinear
operation and its shifts. Let q = (. *,, 7-1,770 771, *.. ) be a doubly infinite se-
quence of independent random variables with a common distribution function.
Take T as the shift operator defined by

(25) T77 = 7' ( *, 71, '1, 72, ...

that is, the nth component of 71,(T71)t = 7n+ The processes we are thinking of
are generated in the following way. Let g be a Borel function of an infinite
number of variables such that the random variable g(71) has finite second moment
EIg(77) 2 < oo. A stationary process {x,} is generated by taking

(26) x.= g(Tn"?), n = 0,±1-4-,



436 FOURTH BERKELEY SYMPOSIUM: ROSENBLATT

We can take E {x,,} 0 without any loss of generality. In this section we shall
prove a result of Doob and Leibler [3] indicating that the spectral distribution
function of any process of this type is absolutely continuous. The form of the proof
given is that in [2].

In proving this result it is enough to assume that the qj are uniformly distrib-
uted on the unit interval. For if 1 is not uniformly distributed, one can find a
monotone function so such that (p(t) has the same distribution as ,O if t is uni-
formly distributed on the unit interval.

For each integer m = 1, 2, . we define a process {Xn,.m} by
(27) Xn,m = E{x.n7_m+1, . .17n+m1}.
For fixed n, {xn,m} is a martingale. It follows from well-known theorems on
martingales that xn,m converges to x,, in mean square and with probability one
as m -+ oo.

Let Oj(uj), j = 0, 1, *, be a sequence of orthonormal polynomials on the unit
interval [0, 1] with 0,(u) of degree j precisely. It is well-known that the functions
{@,(u)} are complete in L2[0, 1]. The family of products {fO,(ul) ... Oj,(Uk)} is a
complete orthonormal system for L2[Uk] where Uk is the k-dimensional unit
cube. To get a complete orthonormal system for the infinite-dimensional
cube U we take the function identically one and the system of products
{Oji(umi) ... Ojk(um&)} where ml < M2 < ... < Mk, ji, *, jk _ 1 and k = 1, 2,
* - -. Let k be an arbitrary positive integer. From the discussion given above it
follows that XO,k can be expanded in the form

2k-1
(28) XO,k = L E E C(nj, fflj)1P-i(77w0j=1 -k+1<?n1l< .. <nq<k - 1 ni, .-,ni=lI
where rnj = (ml, *., mj), Tij = (ni, - ., nj) and ij(77Tni) = On(t7) ...* i7n(fm).
Since E{fxo,kI2) < E5IXo12} < oc it follows that

(29) C (7Tj, 7lj)2 <
= 1 111 <1112 < ... <Ili 111, ',P = 1

Since xo = limk,, XO,k with probability one it follows that

(30) o= C(7i fj)1i(17i)
j= 1 inh< ... <tni /i *i ,ni=

with probability one. The identity

(31) i= E E (T(n,7tfj - 701Pni)
j=l mj< <mni Pii, - ,n;=lI

with tj- n = (m1- n, *, mi - n) follows in a similar manner.
Let k be a positive integer, n = (n1, * -, nA) a k-tuplet of positive integers

and mi = (ml, *.., mi,) a k-tuplet of integers with ml < ... < Mk. For any inte-
ger t let xt(m, ni) be given by

(32) Xt(r, n) = E C(n, m + i-t)P(7+)
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where m + I = (ml + 1, * * *, ml, + 1). {xt(i7, ii)} is a moving average and such
processes have an absolutely continuous spectrum. We shall distinguish (ni', f')
from (wi, fi) if 7 0 f'or M -h' is not a vector with equal coordinates. Then the
processes xi(m, fi) and xt(;M', ff') are orthogonal if (i, W) and (m', nf') are distinct
in the sense indicated above. There is an enumerable collection of such processes.
Let {x('*} be the ith process with f(i)(X) its spectral density. Because of the
orthogonality of the processes {x(4} the spectral density f.(X) of El-l xP) is given
by F_X- 1f()(X). The sequence f.(X) is nondecreasing in n since the f(i) (X) are non-
negative. Let f(X) = limn,- fn(X). Then

(33) f rf(X) dX = | lim fn(X) dX < lim | fn(X) dX

=lim E{|
n

x)2} =E{g2} < 00.

The function f(X) is finite almost everywhere and integrable. An easy computa-
tion indicates that f(X) is the spectral density of the process {xt} and the desired
result is established. Analogous results for continuous parameter processes have
been considered by Anzai [1], Kakutani [5] and It6 [41. The importance of such
processes has been stressed in the work of Wiener [10].

It follows from the result obtained above that if h is any square integrable
function defined on the probability space of x = (- * *, x1l, xo, x1, ... ) and if
{Vl} is the process given by Vn = h(T"x), then {Vn} has an absolutely con-
tinuous spectrum. One would like to know whether one can characterize such
processes in terms of independent random variables with a representation like
that of (26). At present this question is unresolved. In fact, not much work has
been done on the question of determining those processes that can be given a
representation of the form (26). Some insight into this question is given by the
discussion in the remainder of this paper.

4. Structural questions for stationary processes

We now pose two interesting structural questions for stationary processes.
Let {x}, with t = 0, :1=1, * - *, be a stationary process and T the corresponding
one-step shift operator. Further, let (B. be the Borel field generated by
x.,xn-_, * - -. The first problem can be conveniently split into two parts.
PROBLEM 1. (a) When can one find a random variable to measurable with re-

spect to 6So, independent of X-1, X-2, - - and such that (0o = 6(.l X to (product
field) where do is the Borel field generated by to? As we shall see, the answer to this
part is almost immediate and rather simple. The second part is the nontrivial
question.

(b) Notice that if (a) is satisfied, the random variables tn = Tnto, n = 0, i 1,
... form a sequence of independent, identically distributed random variables.
Let (tn be the Borel field generated by n. Is Xn measurable with respect to
*-- X (.in- X (in?
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This problem can be easily rephrased in the language of information theory.
The random variable (, can be regarded as the output of a noiseless channel t
that {x,,} is sent through, that is, Sn ,= ( x ,*x**). In part (a) we ask that
the output at time n, S, be independent of the past of the input (x,,-, x"-2,
and yet that §.n coupled with knowledge of the past of the input be enough to de-
termine the input x,, at present. Thus we can write Xn = f(,n, Xn_1 Xn-2, * * *) and
by iteration x,, as a function of in, _n-, * * *,vn-k, Xn-k,l, Xn-k-2, * * for any finite
k. In part (b) one asks whether one can go to the limit so that xn canl be considered
a function of , _,,f- * * alone.

Essentially the second question can be regarded as a reformulationi of the
first question where the condition that t be a noiseless channel is relaxed.
PROBLEM 2. Can one find a sequence of independent uniformly distributed

(on [0, 1]) random variables (, with n = 0, 41, -- and a Borel function
(t) = g(-o, -, *0), = ( , 6-i,, , -) such thal

(34) yn = g(T t) 7 = 0, i 1, i2,2*
has the same probability structure as x, with n = 0, -A- 1, *? Here T is the
shift operator on t. Of course, a positive answer to problem 1 implies that prob-
lem 2 can be answered in the affirmative.

Let n6X3n be the Borel field of sets common to all the Borel fields 3n, with
n = 0, i1, *--. Call a stationary process {Xt} purely nondeterministic if the
only functions measurable with respect to 5n are the constant functions. This
means that there is no information in the infinite past of the process. A little
reflection indicates that if problem 1 or problem 2 are soluble for fx , it must
be a purely nondeterministic process (see [8]).
As remarked before, the answer to part (a) of problem 1 is not difficult. Let

(35) F(anIa,i_1, a-2, * ) = <_ al,|xn_- - a,,-, Xr-2 = a-2,
be the conditional probability distribution function of -{x4. Assume that (35)
is a Borel measure function of the real variables a,1 a,-, - -. Given two distri-
bution functions F and G, we shall say they are equivalent if there is a one-one
function mapping the jumps of F and G onto each other and preserving the size
of the jumps. In [8] it is shown that there is a random variable in satisfying
part (a) of problem 1 if and only if the distribution functions F(anIan_, )
(as functions of an) are equivalent for almost all an,- a-2, (with respect to
the probability measure of the process {x4}).

Let us assume that part (a) of problem 1 is satisfied and inquire under what
conditions part (b) is fulfilled. The remarks of section 3 indicate that there is no
loss in generality in assuming the processes {x,,} and {n} bounded. Naturally
take t(x, x,n_, * * *) as a Borel measurable function of its arguments. Since
(3o = >(_,X Go it is clear that there is a family of transformations S. on half
infinite sequences into the real numbers induced by t such that
(36) Xn = St,(x._1, Xn-2, )
with probability one where (n is independent of xn,_, Xn2, *-- and is given
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by in = (Xn X.-I) *.. ). To say that x. is measurable with respect to
. .. X (in- X (at is equivalent to stating that Xn = 9( n, (n-i, *) where g is a
Borel measurable function. But this will hold if and only if

(37) Xn - E(Xnljn, en-i, *.. **n-k) - 0
in probability as k -oo making use of the boundedness of the {xn} process. Let
,u be the measure on half infinite sequences induced by the probability measure
of the process {x.}. For convenience we introduce the following notation. Let

m= (Xm, Xm-1, * * *)

(38) Sym-l = Stm(Xm-l, Xm-2, *)
{Stmm-1i} = (Sm-, Xm-1 Xm-2, *

We now give an argument proving the following theorem.
THEOREM. The condition that

(39) Xn- E(XnIn, . ** * 0

in probability as n -+oo is satisfied if and only if there is a set of points M of go
points of ,A measure one such that

(40) Stn{St- . {St{S0} ...}}I I Stn {SZn {{S... } ..}} 0
in ti, *** ,

-** measure for all yo, yo in M as n - .

Assume there is a set M of p measure one satisfying (40). Take zo EAM. For
all To E M and any fixed e > 0 the measure

(41) m{(1, .** nSZ.{... {SZ10}***}.. St** {SZIOj ... I} > 4E 0

as n oo. This implies that

(42) P{tx- - .SJ.... {Stl ..} } > e}

= f m{(,*, )| S|tnt VS0...I
- St{... {Stl0o} . .}I > e} d,u (xo) 0

as n -*. so that
(43) -n- - .}-0

)

in probability as n -o. On the other hand

(44) EIE(xnIjn, ,*I) -Stj...* {Stl0l} f

- El7|E(Sin{. *- {Stz0} * * *} - ..* {S.1z.} I* }lIn, X)

_ E[E(IStn{ ... {SJo} ...S}-tn .. {S4z0} ...*} IIn ..

Elxn -St... {St} .)-1 *0.
Therefore xn - E(x,jlt, *., 1) -**0 as n -* o in probability.
Now assume that xn - E(xn%n, ***, W) -O0 in probability as n - but that

(40) is not satisfied. Given a sufficiently small e > 0 there are then sets M1, M2
with A(Mi), ,u(M2) > 6(e) > 0 such that for To E M1, T'0 M2
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(45) m{(ti, * * * St,-{. {Sto} - St{ {S0} }| > e} > 6(e)
for an infinite number of values of n. However

(46) x- E(x.lt., ***, l) -O 0
implies that for almost all To (m measure)

(47) St{. {StT.1} * * - E(St{*... *f}St,o *,* t1) 0

in (, ** , n measure, a contradiction.
What results exist on these two problems are rather scattered. The most

coherent set of results are those on \Markov chains. Let us therefore consider
problem 1 for Markov chains. Let the transition probability matrix of the chaiii
be P = (pij). It has already been remarked that part (a) of problem 1 has all
affirmative answer if and only if the conditional distribution functions are equiv-
alent for almost every past. This means that the row probability distributions
in the transition matrix must be the same except for permutation. Let the posi-
tive probability masses common to the distributions {pij, j = 1, 2, * * *} be
qi 2 q2 _ ... > 0 in order of magnitude, E qi = 1. We call such Markov
chains uniform chains. When the qi are all distinct one can characterize the
random variable tn simply. If {xn} is a stationary uniform Markov chain with
the qi distinct, tn is uniquely determined (up to a one-one transformation modulo
sets of measure zero) and is of the form

(48) t. = Z(xn x.-1) = k for (x. , x,,-) such that pxn t,x. = qk.
This is implied by the following argument. Write in = t(xn xn_-1, - * *). Now t
must take m distinct values (where m < X is the number of distinct q) with
probability one. Label the values 1, 2, ... for convenience. Let the inverse
function of t as a function of xn for fixed xni-, Xn-2, * be n(t, x.-I, xn*2,
Since tn is independent of xn_-, X-2, * - -

(49) P{tn = j XnX-1 = il, Xn-2 = i2, *- = P{ .iJ =)

Since the qi are distinct, the function 1(j, il, i2, -) for fixed i1, j must be
independent of i2, i3, .... Therefore 77(j, il, i2, .. - ) = (j, i1) so that
&., x._1, ***) = , x_-1). The function t must be constanit on the set

(50) {(i, j)lpij = q,}
and for convenience we set t = k on this set.
The remarks just made indicate that the answer to part (a) of problem 1 is

rarely in the affirmative in the case of Markov chains even though the chain is
purely nondeterministic. Nonetheless it is of some interest to find out when part
(b) of problem 1 is satisfied for stationary uniform Markov chains with the qi
distinct. We have already noted that processes for which problem 1 (or 2) has a
positive answer must be purely nondeterministic. In the case of Mllarkov chains
this means that the set of all states must be an irreducible closed set of persistent
states. An interesting necessary and sufficient condition for a positive answer to
problem 1 can be given in algebraic terms. Let Mk be the matrix
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(51) ~~~~~Mk= leii(k)l
where

(52) e ii (k) =
I if P-j = qk
(2 otherwise.

There are m such distinct matrices Mk. Each such matrix Mk has precisely one
element equal to one in each row and all other elements zero. Notice that every
product of a finite number of the Mk also has these properties. No two distinct
Mk have a one in the same location. The matrices {Mi} correspond to a family
of mappings of the set of states of the process into itself induced by the transition
probability matrix P. First consider the semigroup generated (by finite opera-
tions) from the {Mk}. Notice that the matrices of this semigroup are of the
same type, that is, have precisely one element equal to one in each row and all
the rest zero. Complete this semigroup by adding to it all limit matrices. Call
this semigroup the completed semigroup generated by {Mk}. We shall say that
this semigroup is point collapsing if it has as an element a matrix with all the
elements in some colunm one. A simple application of the theorem of this sec-
tion indicates that a purely nondeterministic stationary uniform Markov chain
with distinct qi has a representation of the type indicated in problem 1 if and only
if the completed semigroup generated by the {Mk} is point collapsing. Since the
proof is almost immediate we do not go through the details.

It is easy to give examples of purely nondeterministic Markov chains for
which 1 (a) is satisfied and 1 (b) is not. The simplest such example is the Markov
chain with the two states 1, 2 the stationary instantaneous distribution

(53) 1 {x. = 1} = P {x, = 2} =

and the transition probability matrix

(54) P -(q p) 0 <p, q =I1-p < 1, p9q.

Here

(55) Illl = ( 0°), M2 = (° 1),
so that

(56) =(Xn Xn-1)=)= { itherwise (1, 1), (2, 2)
t2otherwise.

Notice that x,, is not a function of .. - * * since E(Xnt, n-l ***) = Ex.-
It is generally a tedious computation even in the case of a finite state uniform

Markov chain to find out whether the completed semigroup generated by the
{Mk} is point collapsing. One might hope for a simple criterion that would
provide either a necessary or a sufficient condition for a positive answer to
problem 1 in terms perhaps of the invariant vector (stationary instantaneous
distribution) of the Markov chain. In the case of the simple example given
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above, we note that the stationary distribution is uniform. Perhaps this would
provide such a criterion. We give two simple examples to show that a satisfac-
tory criterion must be somewhat more elaborate than a simple statement about
uniformity of the invariant distribution. Consider a Markov chain with transi-
tion probability matrix

ql q2 q3 q4\
(57) P i q2 q4 q3

q2 q3 q4
q2 qi q4 q3

with the qi positive and distinct and ql + q2 = q3 + q4 = 1/2. The invariant
distribution is clearly uniform. Nonetheless, a simple computation indicates
that the semigroup generated by the {Mk} is point collapsing so that the answer
to problem 1 is positive. A second example is provided by the Markov chain
with transition matrix

/ql q3 q2 q4\

(58) P qi q3 q2 q4
q2 q4 q3 qi
q2 q4 q3 qi

with the qi positive and distinct. If the qi are appropriately chosen, the in-
variant distribution will have distinct elements. Nonetheless the answer to
problem 1 is negative since the semigroup generated by the {Mk} is not point
collapsing.
For reasons of clarity it is worthwhile seeing what one can say about the

problem in terms of the concepts associated with the coding problem of infor-
mation theory, even though it is trivial. Let us consider the capacity of the
channel t = t(x,, x.-I) assuming that we are dealing with finite state processes
(let us say m states). Since the channel is a noiseless channel with finite memory
and essentially one-one given knowledge of x,,-, it follows that the average
entropy of an input, the input and output jointly, and the output alone are all
the same. But this implies that the channel capacity is the maximum of average
entropies for all possible inputs. Thus, the channel capacity is m log m. None-
theless, as we have noted there are inputs {x.} with average entropy smaller
than m log m that cannot be reconstructed from the output. On reflection, the
reason is clear. Here we do not allow coding. The channel t is determined so as
to generate independent random variables from the input where the input is to
be directly transmitted without coding. Given t, * - * v _k the knowledge lack-
ing to reproduce x,, is that of Xn_k-1. For some processes we recover this infor-
mation as k -+ oo and for others we don't. Problem 1 is that of determining the
processes for which this information is recoverable.
The second problem has a more natural answer in the case of Markov chains.

In fact, in [9] it is shown that the purely nondeterministic stationary Markov
chains are precisely the Markov chains for which a representation of the form
(19) is possible. In the case of Markov chains this is equivalent to a positive
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answer to problem 2. Clearly this is the best one can hope for. It is ani interesting
and open question as to whether the same is true of all purely nondeterministic
stationary processes with respect to problem 2. Essentially the proof proceeds
by first passing the Markov chain {x,,} through a channel with noise and with-
out memory so as to enlarge the probability space. The output of this channel
is a Markov process {yn} from which one can immediately reproduce {xn}. A
deterministic channel t is then determined in terms of {y,}. This channel manu-
factures independent random variables and it is in terms of this output that
{x,,} is constructed.
In obtaining the results cited above, the simplicity of the state space of the

process (the fact that it is countable) plays an important role. In the case of a
Markov process with a conditional probability distribution F(a,,Iani_) continu-
ous in an for almost every past, the state space is continuous and one can im-
mediately construct a noiseless channel satisfying part (a) of problem 1 by
setting
(59) x=( x-) = F(xnk,1X-I).
Here in is independent of the past xn-I, Xn-2, * * * and yet tn and xn_ determine
x,,. Nonetheless, even if {x,,} is purely nondeterministic, it is generally not true
that problem 1 has an affirmative answer for this channel. In fact there may be
some other channel t satisfying 1(a) for which problem 1 has an affirmative
answer even though the answer is negative for t (see the example on page 680
of [8]). Therefore, one must generally take care in choosing the proper t. A
discussion of some scattered results in the case of continuous state space station-
ary processes can be found in [8].

I would like to thank D. Slepian and S. P. Lloyd for their helpful comments.
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