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1. Introduction

The investigation of properties of sample functionls of different stochastic
processes has attracted much attention. It seems, indeed, that the characteri-
zation of a stochastic process is not exhaustive unless such basic properties of
sample functions as continuity, kind of discontinuity (if any), integrability, and
so on, are known. The most advanced investigations in this field are for certain
particularly distinguished classes of stochastic processes, namely Markov proc-
esses, processes with independent increments, and martingales. There are im-
portant results due to Doeblin, Doob, Levy, Wiener, and others. For arbitrary
stochastic processes, without the assumption that they belong to some tradi-
tionally distinguished class of stochastic processes, conditions have been given,
expressed in terms of the moments of the random variables of the processes con-
sidered, under which almost all sample functions are continuous (Kolmogorov,
[11]) or have no discontinuities of the second kind [12]. The author [7] has
given conditions expressed in terms of some absolute probabilities under which
almost all sample functions of the process are jump functions with a finite ex-
pected number of discontinuities. The object of this note is to strengthen these
results and to obtain other related results.

2. Notation and summary

We consider the real separable (see p. 51, [4]) stochastic process {xt, t E Io}
where Io is a closed interval. We denote by Q the set of elementary events c, by
B the smallest Borel field of w-sets with respect to which all the random vari-
ables xt where t E Io, are measurable, and by P the probability measure on &.
As is known [9], the Borel field B is generated by the aggregate of w-sets of the
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form {[xt,(w), , xj(w)] E A}, where A is any right semiclosed interval, and
(t1, * - -, t) is any finite set of values of t E I0 and n = 1, 2, *- -. The measure P
on 03 is uniquely determined by the finite-dimensional probability measures of
w-sets of the above form. Denote by xi the increment of xt in the interval I C Io
and by III the length of I. We shall consider the following functions.
(1) a(I) = P{xI #0°,
(2) b(I, e) = P{IxiI > e},

r ~~~~n
(3) A(I) = f a(J) = lim E a(I.k)

JI noo k=1

r ~~~~n
(4) B(I, E) = f b(J, e) = Jim E_ b(InkE)

JI ~n-- k=1

as max1, kn IInkl -- 0, where {Ink} is a partition of I into nonoverlapping inter-
vals Ink, with k = 1, 2, * * *, n. The expressions A (I) and B(I, e) are the Burkill
integrals of a(I) and b(I, E) respectively. The corresponding upper Burkill inte-
grals A(I) and R(I, e) are obtained by replacing in (3) and (4) the symbol lim
by lim. Finally we define
(5) Q(t) = lim a(I)

as I contracts to a fixed point t C I.
Conditions expressed in terms of the functions (1) to (5) are given under which

almost all sample functions of the process
(a) are jump functions where locally monotonic, as defined below,
(b) have no discontinuity of the first kind at a given but arbitrary point

t E Io,
(c) are jump functions without fixed discontinuities and with a finite expected

number of discontinuities equal to A(I),
(d) are constant on the whole interval Io,
(e) have no discontinuities of the first kind.
A condition is given in terms of the covariance function of a process stationary

in the wide sense, under which almost all sample functions are continuous.

3. General results
We begin with the following definitions.
DEFINITION 1. The sample function xt(w) will be called a jump function where

locally monotonic (briefly, a jump function wlm) if at any continuity point
t E Io -S(w) of Xt(W), where S(w) is some possibly empty set nowhere dense in Io,
at which xj(W) is locally monotonic, the equality xt'(W) = xt(w) holds for all t' of
some interval (t - O(t, w), t + 0(t, w)).

DEFINITION 2. The sample function xg(W) will be called a jump function if at
any continuity point t C Io of x¢(w) the equality xe(w) = xg(w) holds for all t' from
some interval (t - 0(t, w), t + 0(t, w)).
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It is evident how definiitions 1 and 2 should be modified for the endpoints of
the interval Io.
THEOREM 1. Let the process {xt, t E Io} be separable and let the relation

(6) lim a(I) = 0
III b.0

hold where I C Io. Then almost all (P) sample functions of the process are jump
functions wlm.

PROOF. Let relation (6) hold. We can then find for any fixed point t E Io a
sequence of parameter points t' # t for r = 1, 2, ***, converging to t and such
that the relations

(7) -xt Xt" id~°} <2r
hold for r = 1, 2, *-. In virtue of the Borel-Cantelli lemma, the w-set At which
is such that for any w E At there exists an R(w) such that for all r > R(w) the
equality xt(W) = xt,(Xw) holds, satisfies the equality
(8) P(A,) = 1.

Denote by S the w-set such that for any w E S there exists for every 6 > 0
a point t'(cw) of the interval (t - 6, t + 6) satisfying the equality xt(w) = xt,(c).
Since At C St we have by virtue of (8) the equality
(9) P(¢t) = 1.

Let now T = {tj} for j = 1, 2, ***, be some denumerable dense set in Io.
Relation (9) implies

(10) p (Fn z3) = 1.

Since the process is separable and, in virtue of (6), T satisfies the separability
conditions it follows from (10) that almost all sample functions xt(w) are jump
functions wlm.

Before formulating theorem 2 let us remember that the function xt(co) is said
to have a discontinuity of the first kind at some point t if xt(w) has at t both
onesided limits and they are not equal. If at least one onesided limit at t does
not exist the discontinuity is said to be of the second kind.
THEOREM 2. Let {xg, t C IO} be a real, separable stochastic process and let the

relation

(11) lim b(I, e) = 0
1ll-0

hold for any E > 0, where I C Io. Then almost all sample functions have no dis-
continuity of the first kind at any fixed but arbitrary point t E Io.
PROOF. Let relation (11) hold and let the assertion of the theorem not be

true. We have then for some point t C Io (different from both endpoints of IO)
the equality
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(12) P{lim x, = x to-O3 xto+O = lim x:} = a,
ttto t 4to

where a > 0.
Denote by J C Io an interval having to as its midpoint, by An(J) an c-set for

which Ix.,(w)l > 1/n, and by A(J) an w-set for which xj(co) wd 0. The sequence
{An(J)} is increasing, hence

A(J) = U An(J) = lim An(J),
(13) n=1 n-40

()P{XJ o} = P{A(J)} = lim P{A.(J)}.
n--

Taking into account (12) and (13) we obtain a _ limrn j-o P{xJ 5 O} =
limIJIo limn, P{An (J)}. Consequently for IJI sufficiently small and n suffi-
ciently large, that is, for E sufficiently small, P{An(J)} will be at least near
a, which contradicts relation (11). Hence a = 0, and theorem 2 is thus proved.

Let us remark that if (11) holds, any set of parameter points dense in Io
satisfies the separability conditions, and consequently for any fixed but arbi-
trary t E Io the equation

(14) P{Xt-o = xt+o # Xi} = 0

holds. Now let (11) be satisfied and let the process {Xi, t C Io} have a fixed dis-
continuity point t', that is, for some ,B > 0, the equation
(15) P(limxg = xt') = 1-

holds. We then obtain from theorem 2 and (14) the following.
COROLLARY. Let the real, separable process {Xt, t E IoI satisfy (11) and let it

have a fixed discontinuity point t' C Io. Then the probability that xt has at t' a
discontinuity of the second kind equals ,3 where ,B is given by relation (15).
Theorem 3 which we shall now formulate is a stronger version of some results

obtained by the author [7]. It was assumed in that paper that the process under
consideration had no fixed discontinuities. Now this assumption is entirely
omitted in part (b) and is replaced in part (a) of theorem 3 by the weaker as-
sumption (11). The former assumption is now obtained as a consequence (ii).
In obtaining these strengthened results essential use will be made of the corollary
to theorem 2.
THEOREM 3. Let the stochastic process {xt, t E Iol be separable.
(a) If relation (11) holds for any f > 0 and if moreover

(16) A(Io) <00
then for every open interval I C Io,

(i) almost all (P) sample functions of the process are jump functions,
(ii) the process has no fixed points of discontinuity,

(iii) the relation
(17) Et(I) = A(I) = A(I)
holds, where t(I) is the number of discontinuities of xt(w) on the interval I,
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(iv) the w-set such that at the discontinuities, if any, of xs(w) both onesided limits
exist, has probability 1,

(v) the function Q(t) exists almost everywhere in I and satisfies the relation

(18) fI Q(t) dt _ A(I).
(b) If a(I) is an absolutely continuous function of an interval or a(I) satisfies

the Lipschitz condition, then the assertions (i) to (v) are satisfied, and moreover

(19) f| Q(t) dt = A(I).
PROOF. In the proof of assertion (i) given formerly in [7] the assumption

that the process has no fixed points of discontinuity was used only for stating
that any denumerable dense set of points t E I satisfies the separability con-
ditions. Now relation (11) is sufficient for this purpose and therefore assertion (i)
is proved. Moreover, in proving assertion (i), in [7] it was also proved that almost
every sample function xt(co) has a finite number of discontinuities. Hence by
virtue of relation (11) and the corollary to theorem 2, the process has no fixed
points of discontinuity, which proves assertion (ii). Once this fact has been es-
tablished the proof of the remaining assertions of part (a) given in [7] remains
valid.

In order to prove part (b) of the theorem we remark that if a(I) satisfies the
Lipschitz condition it is (see p. 287, [2]) an absolutely continuous function of
an interval and this implies (see p. 287, [2]) that relation (16) holds. Since (11)
evidently holds then also, all the assumptions of part (a) are fulfilled and conse-
quently so are all its assertions. Moreover the absolute continuity of a(I) implies
(see p. 289, [2]) the absolute continuity of A(I), hence relation (19) is true.
Theorem 3 is thus proved.
THEOREM 4. Let {Xt, t E Io} be a real, separable stochastic process. The relation

(20) P{xt = const., t E Io} = 1

holds if and only if the relation
(21) Q(t) 0
holds uniformly with respect to t E Io.

PROOF. Let relation (21) hold uniformly with regard to t C Io. We shall show
that a(I) is then an absolutely continuous function of an interval. Indeed, rela-
tion (21) implies that for any a > 0 there exists such a , > 0 that if III < 3
the inequality a(I) < aII is true. Let us now divide the interval I into a finite
number, say n, of nonoverlapping intervals Ik with IIkI < 3 for k = 1, 2, * * *, n.
The function a(I) then satisfies the Lipschitz condition in every interval Ik and
consequently a(I) is an absolutely continuous function of an interval in Ik. It
then follows that a(I) has the same property in the whole interval Io. By virtue
of part (b) of theorem 3 the relation (19) holds. Taking into account (21) we
obtain A(I) = 0, which in virtue of (17) implies relation (20). The "if" assertion
is thus proved, the "only if" assertion is evident.
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Let us remark that if we assume that for any E > 0 relation (11) holds andl
moreover R(I, e) < Xo, we cannot obtain any new properties of the sample
functions of the process in addition to the property established in theorem 2.
However, the following theorem is true.
THEOREM 5. Let the stochastic process {xt, t E Io} be separable and let the re-

lation

(22) R(I, f) = 0

hold for any e > 0. Then almost all (P) sample functions xi(w) have no discontinu-
ities of the first kind.

PROOF. Let us at first remark that relation (11) follows from relation (22).
Let T = {tjlj = 1, 2, .. *} be a denumerable dense set in Io and let Tn,i, * *, nn

for n = 1, 2, * denote the points ti, * * *, tn arranged in increasing order,
Tnl < ... < Trnn. Denote by Ink the interval [rnk, Tn,k+l) and by pn(T, E) the
number of intervals Ink for which IXI,,I > E. We have

n
(23) Epn(T, E) = E b(Ink, E).

k=1

It follows from relation (22) that as max, lkn Ink O we have
lim,- Epn(T, e) = 0. The last relation implies the existence of a subsequence,
nj T , for which the relation
(24) P{lim Pn3(T, E) = 0} = 1

j-40o

is true. Since Pn can take only noninteger values, relation (24) implies that the
w-set A(e), which is such that for any co E A(f) there exists a jo which may depend
on e and w such that for j > jo the equality Pni(T, E) = 0 holds, satisfies the re-
lation P{A(E)} = 1. Hence, taking into account the method of constructing the
intervals Ink, we see that almost all (P)xt(w) have no discontinuities of the first
kind with a jump greater than f. Consider now a sequence of positive constants
{f,} where En, J0. The set A, such that the x,(w) corresponding to w E£ A have no
discontinuities of the first kind, is given by the formula

(25) A = nfA(n)
n=1

Consequently, since P {A(En} = 1, we obtain P{A) = 1. Theorem 5 is thus proved.
Let us remark that, as Dobrushin [3] has proved, the assertion of theorem 5

holds under the assumption that as At -> 0 the relation

(26) sup P{Xt+t- Xtl > f} = o(At)
tCIo

t+AtCIo

holds for any e > 0. We shall show that relation (26) implies relation (22).
Indeed it follows from (26) that for any tq > 0 there exists such an a > 0 that
for any t E Io, t + At E Io with lAtl _ a we have P{lxt+a,- x,J > e} < nIAtl.
In other words for sufficiently large n we shall have for k = 1,* , n the relation
b(Ink, E) < i71Inkl and consequently
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n

(27) kE, b(Ink, e) < 71 1 101
k-1

Since q is arbitrarily small we obtain relation (22).
It is easy, however, to show that relation (26) is a more restrictive condition

than (22). Indeed the following example shows that (22) may be satisfied
although (26) is not.
EXAMPLE. Let Q = =jlj 1, 2, * *} and let P(wj) = 1/2i. Let x,(Wj) be

given by the formula
(28) Xt(Wj) = 2it 0 t _ 1/2i,

1,l' 1/2i < t < 1.
It is evident that for this process relation (26) does not hold. We shall show that
relation (22) holds. Let ij > 0 be an arbitrary number. We have to show that
for sufficiently small max, <kSn |Inkj the inequality

n

(29) E P {IXI.,; > fE} < 17

will be true. We have

(30) E P{jxI.lj > e} = E E P{xI.,"l > EIX, = X(Wj)l.
Let jo be an integer such that 2-jo < etq and consider the partition {Ink} of the
interval [0, 1] such that max, Sk sn lInkj < 2-joe. We have then forj = 1, 2, * jo
(31) P{IXInhI > fEXt = Xt(&j)} = 0.

Consequently

(32) E P{Ix{jxi > e}ct =Xg(Wj)}j.
Since, as follows from the definition of the xt(wj), the second sum, where k

runs from 1 to n, on the right side of (32) can only be at most equal to l/e, and
taking into account the method of choosing jo, relation (32) implies relation (29).
Hence relation (22) holds.

4. Particular cases

We shall deal in this section with stochastic processes of certain special types.
THEOREM 6. Let {x,, t E hQ} be a real, separable martingale and let relation (22)

hold. Then almost all (P) sample functions Xt(w) of the process are continuous.
PROOF. The assertion of the theorem follows from theorem 5 and from a

theorem of Doob (see chapter 7 [4]) stating that the set of sample functions
xt(w) of a separable martingale which have only discontinuities of the first kind,
if any, has probability 1.

Dobrushin [3] has proved the assertion of theorem 6 under the stronger as-
sumption (26).
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We shall now strengthen slightly a theorem of Dynkin [5] and Kinney [9].
Denote
(33) C(h, e) = sup P{ix+t- xtl > ElXt = X},

t+:tclo
- 0 <X<°°

(34) D(h, E) = sup PPx,+jl- XtI > Elxt = x} dF,(x),
tEIo J-X

t+AtcIo
lAtl _h

where FI(x) = P(x, < x).
THEOREM 7. Let {xi, t E Io} be a separable Markov process. If as h 0 the

relation

(35) D(h, E) = o(h)

holds, then almost all sample functions of the process are continuous.
PROOF. We have

(36) P{jxt+At -Xtl > E} f P{lXt+At - x1, > elxt = X} dFt(x).
Relations (35) and (36) imply relation (26), hence, a fortiori, relation (22). By
a theorem of Fuchs [8], the assertion of theorem 7 is obtained.
We remark that Dynkin and Kinney have proved the assertion of theorem 7

under the more restrictive assumption that C(h, e) = o(h).
Theorem 8 below is known. However, we shall give a simple proof using tools

applied in this paper.
THEOREM 8. Let {Xt, t E Io} be a separable stochastic process with independent

increments and let relation (6) hold. Then the assertions (i) to (v) of theorem 3
are true.
PROOF. It has been proved in [6] that the independence of increments and

relation (6) imply the relation (16). Consequently if the assumptions of theorem
8 are satisfied, all the assumptions of part (a) of theorem 3 are satisfied and
hence all its assertions are true.
THEOREM 9. Let {x,, -oo < t < +o0 } be a real, separable stochastic process,

stationary in the wide sense, and let the covariance function R(T) be for r -O 0 of
the form
(37) R(T) = D2(xo) + O(Ir1+8),
where a > 0. Then almost all sample functions of the process are continuous.

PROOF. We have for any real t and T the relation
(38) E(xt+T- xi)2 = 2[D2(xo) - R(T)].
Taking into account (37) we obtain for arbitrary t

(39) E(xt+, - Xg)2 = O(ITI1+1).
By the result of Kolmogorov (published in [11]), relation (39) implies that
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almost all sample functions xt(w) of the process are continuous in every finite
closed interval. Theorem 9 is thus proved.
We remark that if the covariance function R(T) is twice differentiable at

T = 0, then almost all sample functions of the process are absolutely continuous
(see p. 536, [41]).
We remark finally that, as Belayev [1] has shown, if the process

{x,, -o < t < o} is real, separable, stationary, and Gaussian, and if the
relation

(40) R(T) D2(xo) + 0 (log Irll+')
with 6 > 0 holds, then almost all sample functions are conitinuous. Relation (40)
is evidently less restrictive than relation (37); however, Belayev considers only
Gaussian stationary processes.
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