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1. Introduction

To avoid constant repetition of qualifying phrases, we agree on the following
notation, terminology, and conventions, unless otherwise specified.

I is a denumerable set of indices. The letters i, j, k, and 1, with or without
subscript, denote elements of I.

I = I U {oo} is the one-point compactification of I considered as an isolated
set of real numbers; o- > i.
N is the set of nonnegative integers used as ordinals. The letters v and n denote

elements of N.
T = [0, o-); T° = (0, 00). The letters s, t and u, with or without subscript,

denote elements of TO.
A statement or formula involving an unspecified element of I or TO is meant

to stand for every such element.
A sequence like {fi} is indexed by I; a matrix like (pij) is indexed by I X I; a

sum like ,j is over I.
A function is real and finite valued. A function defined on T° and having a

right hand limit at zero is thereby extended to T; if in addition it is continuous
in TO it is said to be continuous in T.
A (standard) transition matrix is a matrix (pij) of functions on T' satisfying the

following conditions:

(1.1) pij(t) > 0,
(1.2) L pij(t)pjk(s) = pik(t + s),

(1.3) lim pii(t) = 1,
uo

(1.4) Epij(t) = 1.

A (temporally) homogeneous Markov chain, or a Markov chain with stationary
transition probabilities, associated with I and (pij), is a stochastic process {xg},
t E T or t E TO, on the probability triple (Q, a, P), with the generic sample point
cw, having the following properties:
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36 FOURTH BERKELEY SYMPOSIUM: CHUNG

(1.5) For each t in T or T° respectively, Xt is a discrete random variable,
and the set of all possible values of all xt is I;

(1.6) If t, < .. < tn, then

P{x(t^+1, c,) = i.+1, 1 _ v < n|x(ti,v) ill} =II P - t4).
v=l1

An equivalent form of (1.6) is the Markov property:

(1.7) P{x(tn+l, W) = iI+Ix(tv, w) = i, 1 _ v _ n}
= P{x(tn+±, c) = in+1lx(tn, w) = i4,} = pi.i-1(t.+l -t").

A version of the process will be chosen to have the following further properties:

(1.8) For any denumerable set R dense in T, and every w &E Q,

x(t, co) = lim x(r, c)
rJ t
rER

for all t;

(1.9) As a function of (t, w), x(t, w) is measurable with respect to the
(uncompleted) product field e X W where e is the usual Borel field
on T.

The property (1.8) implies that the process is separable; the property (1.9) is
called the Borel measurability of the process. Other properties of the process
which follow from (1.5) to (1.9) for almost all co, may be supposed to hold for all
', so long as only denumerably many such properties are invoked.
From now on a process {xt} having the properties (1.5) to (1.9) will be ab-

breviated as an "M.C." It is called an open M.C. iff the parameter set is TO.
The set I is called its (minimal) state space, the matrix (pij) its transition matrix.
The distribution of x0, when defined, is called its initial distribution {pi}, where
pi = P{Ai} and Ai = {w :x(0, w) i}. When pi = 1, the resulting P will be
written as Pi; for example,
(1.10) Pi{x(t, c) = j} = pij(t) = P{x(s + t, c) = jlx(s, W) = i}
whenever the last is defined.
The study of the theory of M.C.'s consists in:
(a) uncovering the properties of, and relations among, the functions pij;
(b) describing qualitatively and quantitatively the nature of the sample

functions x(., w), w E Q; (less precisely, to analyze the evolution of the process
in time).

Superficially at least, object (a) can be regarded as a purely "analytic" (as
distinguished from "probabilistic" or "measure theoretic") program. We may
simply wish to find as much information as possible about the set of functions
satisfying (1.1) to (1.4). Or we may regard the matrices $(t) = (pij(t)) as form-
ing a semigroup of operators and study the properties of the semigroup. A good
number of papers have been written from such a standpoint eschewing proba-
bility itself "like the devil." For us however the most rewarding part of this
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study is the uPterplay bet%well tlhe ''aaiilytic'' anid ''stochastic'' aspects of the
theory. It is the main purpose of this paper to show, by various illustrations from
recent work, that the structure of the transition matrix on the one hand, and
the behavior of the sample functions on the other, are so intimately connected
that one can hardly strike a chord in the one without bringing out an echo from
the other. The two sides of the theory of Markov chains induce, sustain, and
complement each other.

2. Comments on the conditions (1.3) and (1.4)

It has long been observed that much of the analytic structure of a transition
matrix (pij) remains unchanged if the condition (1.4) is replaced by the weaker
one

(X2.1) Epij(t) _-` I .

A matrix (pij) satisfyinig (1.1), (1.2), (1.3), an(d (2.1) vill be called a satbstochastic
transition matrix. ( In distinction a transition matrix as defined in section 1 may
be qualified as stochastic.) The above observation is easily justified by a simple
reduction. Add a new index 0 to I and define new elements as follows:

pse(t) = 1- ,p,
(2.2)

POO t-1, pej(t) 0.
The new matrix is stochastic and contains the old one. Probabilistically speak-
ing, the new state 0 is an absorbing state into which all the diminishing mass
disappears. Thus pio(t) is nondecreasing in t and we have

(2.3) pse(t + s) - pie(t) = E pij(t)pj6(s).

'T'his trivial e(quationi will assume more interestinig proportions as we proceed.
Not only can the condition (1.4) be weakened into (2.1), but it can be dropped

completely for many analytic purposes. This is implicit in some known proofs,
but it was first realized in its full import by W. B. Jurkat [5] when he dispensed
with this condition in more difficult cases. This realization has an important
analytic consequence, for the omission of the "row condition" (1.4) restores
complete symmetry to the rows and columns of the matrices. They form then
simply a semigroup of nonnegative matrices {$(t)} converging to the identity
matrix I at t = 0. We shall not pursue the subject in this generality here since
it has as yet no probabilistic interpretation.
Turning to the condition (1.3), let us first note that together with (1.1) and

(1.2) it implies that every pij is continuous in T (see after lemma 1 below).
Indeed, if we regard the semigroup {%3(t)} as operating on absolutely conver-

gent series, then the condition (1.3) is equivalent to the strong continuity
of the semigroup (see [4], p. 636). Now in the terminology of semigroup theory
there is an even stronger kind of continuity, namely that in the "uniform oper-
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ator topology," which is equivalenit here to the condition that the convergenlce
in (1.3) be uniform with respect to all i E I. Using the notation to be introduced
at the beginning of section 5 below, it can be shown (theorem II. 19.2 of [1])
that this condition is equivalent to the boundedness of the sequence {qi}. In
this case the matrix Q = (qij) is a bounded operator and we have (see [4], p. 635)

(2.4) 9(t) = eQt,
Hence this case, which includes the case of a finiite set I, may be regarded as
"solved" analytically. Probabilistically, the uniform condition implies (but is
not implied by) that almost every sample function of the M.C. is a step function,
niamely one whose only discontinuities are jumps. While this was the case first
studied for continuous parameter Markov processes, the properties of a sample
step function are not essentially different from those of a sample sequence
arising from a "discrete skeleton" (see section 6) of the M.C. The study of
continuous parameter M.C.'s would scarcely be any innovation if we were to
confine ourselves to this "trivial" case and label any new phenomenon as
"pathological."

3. Two analytical lemmas

The first lemma is theorem II. 2.3 of [1], from which a superfluous condition
has been removed, even though that very mild condition is satisfied in all
known instances of application. The added argument is due to D. G. Austin
(oral communication).
LEMMA 1. Let (g,.) be a matrix of nonnegative functions on T° satisfying the

condition that for every i,
(3.1) limg1i(t) = 1.

t ;o

Let {fj} be nonnegative functions satisfying the following equations:

fj(s + t) = Efi(s)gi;(t), j C I,
(3.2) i

[or fi(s + t) = , gi1(s)fi(t), i E I].

Then each fj is continuous in T.
PROOF. It is proved in theorem II. 2.3 of [1] that each fj is left-continuous

and has a finite right-hand limit fj(t + 0) > fj(t) for every t C TO, and that
fj(O+) exists. Such a function has at most a denumerable set D of discontinuities.
If D is not empty, let to C D so that fj(to + 0) > f,(to). Then there exist e and
6o such that fj(to + a) > fj(to) + e if 0 < 5 < So. There exists so such that
g,j(s) > 1/2 if 0 < s < so. Thus

(3.3) fj(to + s + 6) = Efi(to + 6)gij(s) > [fj(to) + e]gjj(s) + _ fi(to + 5)gij(s).
i it

Letting a a 0 and using Fatou's lemma, we have
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(3.4) fj(to + s + 0) > + Efi(tO)gij(s) = + fj(to + s).

Hence all points in (to, to + so) belong to D, a contradiction which proves the
first part of the lemma. The second part is proved in the same way.
As a corollary we see that all pij satisfying (1.1), (1.2) and (1.3) are continuous

in T, without recourse to the condition (1.4). We remark however that with (1.4)
or (2.1) each pij will be uniformly continuous in T, which is not necessarily the
case without it.
The second lemma is implicit in some previous work (see, for example, theorem

II. 3.2 of [1]) but will be stated in a general form.
LEMMA 2. Let (p*3) be a matrix of functions satisfying (1.1), (1.2), and (1.3).

Let {F,} be nonnegative, nondecreasing functions satisfying the equations

Fi(s + t) - Fi(s) = , p1j(s)Fj(t), i E I,
(3.5)

[or Fj(s + t)-Fj(t) = Fj(s)p1j(t), j E I].

Then each Fi has a continuous derivative F' satisfying

Fi(s + t) = , pij(s)Fj(t), t E T°,
(3.6)

[or F,(s + t) = E F'(s)pij(t), s E TO].

REMARK. Taking the obvious differences, we see that the condition (3.5) is
equivalent to the following: for any t1 and t2,

(3.7) Fi(s + /2) - Fi(s + tl) =j pij(s)[Fj(t2) -Fj(t)].

PROOF. (A more elegant proof of this lemma has been given by Neveu [7].)
By a theorem of Fubini on differentiation, we have for each s and almost all t,

(3.8) F'(s + t) = pj(s)F(t),

where F' deniotes an almost everywhere derivative. Hence by Fubini's theoren
on product measures, (3.8) is also true if t 2 Z and s 5 Z(t) where Z and Z(t)
are sets of Lebesgue measure zero. On the other hand we have by monotonicity
and Fatou's lemma
(3.9) F'(s + t) > E pij(s)Fj(t)
for every s and t, if we agree now to take Fj as the right-hand lower derivate.
Let to 2 Z and suppose for a certain so we have

(3.10) F'(so + to) > E pij(so)Fj(to).

Then it follows that if s > so, since pii(t) > 0 for all t,

(3.11) Fs(s + to) _ E pij(s - so)Fj(so + to) > pij(s - s0) F- pjk(so)Ft(to)
j J k

E pik(s)Fk(to).
k
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This is impossible by the second sentence of the proof; hence (3.8) must hold
for all s, if to 2 Z. For an arbitrary t > 0, let t = to + t1 where to q Z. It follows
that

(3.12) FI(s + t) = Fi(s + t1 + to) = E pij(s + t1)F(to)

= E E pik(8)pkj(tl)FJ(tO) = E pik(s)Fk(tl + to)jik k
-

E Pik(s)Ft(t).
k

Hence (3.8) holds for all t > 0, s > 0. By the second part of lemma 1, each Fjt
is continuous and consequently Fj has a continuous derivative. This proves the
first part of lemma 2. The second part is proved in the same way.

4. Review of the strong Markov property

For a detailed discussion, see II. 8-9 of [1]. The reading of this section may
be postponed until it becomes necessary.

Let {xt} be the M.C. defined in section 1. We denote by at the augmented
Borel field generated by {x,, s _ t}. Let a be a nonnegative random variable
with domain of definition f2, where P(Q,,,) > 0, which is "independent of the
future," namely
(4.1) : a(.) <t} Ci
for every t C T°. Such a random variable will be called optional. The Borel field
of sets A (in a) such that for every t we have

(4.2) A nf{ :a(X) < t}CE
will be denoted by W, the "past field relative to a." Let

(4.3) y(t, w) = x[a(w) + t, w], t E TO.

It follows from (1.9) that yt = y(t, *) with domaiin 5Q, is a ranidomii variable. The
process {fy, t E T°} will be called the post-a process and the augmented Borel
field it generates will be denoted by ', "the future field relative to a." For any
A C Ha we put

(4.4) A(A; t) = P{A; a(w) <_

The measure corresponding to this distribution functionvwill be called the
A (A; *) measure.
The following collection of assertions, valid for each optional a, will be referred

to as the strong Markov property.
(1) For every A C Ha and M C ' we have

(4.5) P{AM|yo} = P{Alyo}P{Mjyo}
almost everywhere on the set {w : yo(w) C I}.

(2) The post-a process {yi, t E T°} is an open M.C. which has the properties
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coicespoiidiiig to (1.8) aind (1 .9), anid whose transition mnatrix is a part of (pij).
ln particular, {yt, t E T' is a M.C. oni the set {' : yo(Io) I}.

(3) For each j E I, A (E 0t and almost every s F (0, t) with respect to the
A (A; -) measure, we have

(4.6) Pfx(t, w) = jjA; a(co) = s} = P{y(t- s, co) = jIA; a(w) = s'.
One version of the conditional probability in (4.6), to be denoted by rj(s, tIA), is
continuous in t E [s, x ) for each s E T.
The following particular case of the strong Markov property, to be referred

to as the strongest Markov property, will be applied in the sequel. The two fields
0 and ' are said to be independent iff for every A C a and AI we have
(4.7) P{A-'AMjQa} = PfARQ,aP{MlQJ;
alternately, since A E12,,,
(4.8) P (,AM} = P-{AtP{M'Qa}.

(4) The fields anid 0a are independenit if and only if there exist functions
-pi} on TO such that for every j C I, t T1° and A C a we have

(4.9) r j(s, tjA) = pj(t - s)

for almost all s in (0, t) ith respect to the A(A; -) measure. WN7e have then

(4.10) pj(t) = P-(Y(t, ) = jlQ-
and pj is continuous in T.

In particular, this is the case if for a fixed j we have

(4.11) P YA(, ) = ,JiQa2 = 1.

5. Transition from and to a stable state

Let us introduce the followiing notation:

(,;.1) -p'(0) = lim1-pii(t) = qii = qi <

(5.2^>) p70ij(() = limi qij < % i j.

That these limits exist anid have the indicated finiteness is w7e.ll kniowin (theorems
II. 2.4 and II. 2.5 of [1]). Analytically, (5.1) follows from the subadditivity of
-log pii(t) which is a consequence of (1.1), (1.2), and (1.3) without the inter-
vention of (1.4). The corresponding basic property of sample functions is given
in the formula

(5.3) Pi{.V(s, c) i, 0 < < t,=t

where the right member stands for 0 if qi = x and t > 0. h'lie state i is called
stable or instantaneous accordinig as qi < oc or qi = x.
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In the rest of this section let i be fixed and pi = 1 so that P = Pi. Define oln
Ai the first exit time from i:
(5.4) a(w) = inf {t: t > 0, x(t, w) 5 i}.
Then (5.3) is equivalent to the assertion that a is a random variable with the
distribution function

(5.5) eqj(t) ef 1-e-qi, t C TO,
which reduces to the unit distribution e if qi = c. It is easy to see that a is
optional. It may or may not be easy to see that a and ' are independent in
the sense of (4) of section 4. For a tedious but rigorous proof of this fact, see
theorem II. 15.2 of [1]; a partially analytic proof will be given later.
We have as a trivial identity valid for any a:

(5.6) P{x(t, w) = j} = P{a(w) _ t; x(t, w) = j} + P{la(w) > t; x(t, co) = j}.

Now let i be a stable state. The second term above is bij exp (-qit) by (5.3).
The first term may be written as

(5.7) Jot P{x(t, w) = jja(c) = s} dP {a(co) _ s}

by the definition of conditional probability. By (4) of section 4, and writing rij
for the pj then we see that (5.6) becomes

(5.8) pij(t) = f ri(t - s)qie -ia ds + e -2iij.

Furthermore by (2) of section 4, we have

(5.9) rik(t + s) = E rij(t)pjk(s),
k E I;s, t E TO.

(5.10) Erij(t) = 1.

The above formulas give an integral representation of pij obtained by a precise
analysis of the local behavior of a sample function at the exit from the stable
state i. It is a clear example of the probabilistic method in reaching analytic
conclusions.
For it follows from (5.9) and lemma 1 that rij is continuous in T. It is then

an immediate consequence of (5.8) that pi, has a continuous derivative p. satis-
fying the following:

(5.11) e-qitd [eqitpij(t)] = p' (t) + qipij(t) = qiri(t).

It follows furthermore from (1.2), (1.4), (5.9), and (5.10) that

(5.12) E ps(t) = 0,

(5.13) E jpsj(t)l < 2qi, t E TO,

(5.14) L ptk(t)pkj(s) = pt(t + s),
k



MARKOV CHAINS 43

namely that both the series in (1.2) and (1.4) can be differentiated term by term
in T° to yield absolutely convergent series-a by no means trivial analytical
fact. Our proof shows that this is tied up with the fact that the post-a process is
Markovian with the same transition matrix (curtailed). The critical case for
t = 0 will be examined later in section 7.
The formula (5.8) has a dual which will be briefly discussed. Let j be stable

and i arbitrary, then we have

(5.15) pij(t) = bije-9il + f0o v,j(s)e-qi(t-8) ds.

The function vij represents a renewal density function; precisely vij is the deriva-
tive of Vij where Vij(t) is the expected number of entrances into the state j in
the open interval (0, t), under the hypothesis pi = 1. Using the notation of
section 6, we have in fact

(5.16) Vij(t) = E [Fij * Fj*](t),
n =O

where * denotes the convolution of distribution functions, F; = e, and
F.lj"+1)= Fjj * F,j; but this explicit formula will not be needed. From the
probabilistic meaning we infer that
(5.17) Vij(s + t) - Vii(S) = E pik(S)Vkj(t).

k

The existence of the continuous derivative vi follows from (5.17) and lemma 2.
(This is a better approach than that in section II. 16 of [1].) Furthermore it
follows from (5.14) that

(5.18) d [pij(t)eqi1]e-qi1 = p' (t) + pi (t)q, = vii(t);

(5.19) E pik(S)p'(t) = pAMs + t),
k

where the series converges absolutely.
Having deduced the preceding results by probabilistic methods, we are now

ready for an analytic short cut based on hindsight. The fact that (exp qit)pi,(t)
is nondecreasing in t, as shown in (5.11), can be proved directly as follows.
Since pii(h) _ exp (-qih) by the subadditivity mentioned in connection with
(5.1) [or probabilistically as a consequence of (5.3)], we have

(5.20) eqi(t+h)pij(t + h) > eihpij(h)eqitp,j(t) > eqi1p,Q(t).
Let Pi,(t) = fo0 pij(s) ds. Then we have by partial integration,

(5.21) pij(t) - bij + q,P,j(t) = f0o e-qi8D[eq8p,j(s)] ds,

where D denotes an almost everywhere derivative. Since this derivative is non-
negative, the left member of (5.21) is a nondecreasing function of t. Now a
trivial calculation based on (1.2) yields
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(5.22) E [pij(t) - cij + qiPij(t)]pjk(S)
- pik(t + S) + qil ik(t + S) - Pik(S) - qil ik(S).

Thus the conditions for the second part of lemma 2 are satisfied if we take Fj(t)
to be the left member of (5.21). It follows that pij has a continuous derivative
satisfying (5.14). In an exactly dual way (5.19) can be proved. We remark also
that neither proof utilizes (1.4).
As far as the analytic part is concerned, the above approach is the simplest.

We can now retrace our steps to define rij by means of the second equation in
(5.11), verify (5.8) as a consequence, and using (4) of section 4, conclude that
the two fields 0,, and ' are independent.
We add the following remarks before turning to another illustratioil of this

kind. The rather complete success of the methods developed in this section
depends on the primary fact that the set of constancy,

(5.23) Si(w) = {t : x(t, co) = i)

for a fixed stable i, consists of a sequence of disjoint intervals without clustering
in the finite (theorem II. 5.7 of [1]). Thus the endpoints of these intervals form
natural relay points in the analysis of the sample functions, with the length of
an interval (sojourn time) corresponding analytically to the smoothing expo-
nential factor exp (A4qit). It is not known whether suitable substitutes for (5.11)
and (5.18), or (5.8) and (5.15), exist in the general case where both i and j are
arbitrary. On the other hand, it has been proved by D. Ornstein [8] (see also
Jurkat [5] and the appendix in [1]) that the equations (5.12), (5.14), and (5.19)
remain valid in the general case. This can be proved by the development in the
next section.

6. First entrance and last exit

Let i #4 j and let Ai, be the subset of Ai where the following infimum is finite:

(6.1) aij(w) = inf {t : t > 0, x(t, &) = j}.
It is verified that aii is an optional random variable, and in view of the last
sentence in section 4, the strongest Markov property applies with y(O, W) = j on
Aij, and the pj in (4.10) reducing to pjj (in general Pk = p k). Now if a = ai, in
(5.6), the second term vanishes by definition and we obtain, by what has just
been said,

(6.2) pij(t) = f0 pjj(t - s) dFij (s),
where
(6.3) Fij(t) = Pi{aij(w) . t}

It is easy to see that Fij is continuous in T but more will be shown presently. The
formula (6.2) is the first entrance formula from i to j. The definitions (6.1) and
(6.3) may be extended to the case i = j, yielding Fii(t) e 1. The last definition,
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as well as (6.4) belov, differs from that givcen in sectionI11.11 of [1] but tle latter
agrees with that in the appendix there.
To proceed further we must introduce the tal)oo p)robabiliity fuinctions_.

(6.4) 3pik(t) = Pi{x(t, co) = k; x(s, w) 5# j, 0 < s < t}.

It follows from the stochastic continuity of the M.C. [equivalent to condition
(1.3)] that jpik(t) 0 if i = j or k = j. These probabilities are well defined on
account of the separability of the process. We observe that

(6.5) Fij(t) = 1 - E jPik(t), i j
k

For fixed j, the matrix (,pik) with i and k in I- is a substochastic transition
matrix:

(6.6(i) E jpik(t)jpk1(S) = jpil(t + S).
k

It is unnecessaiy to exclude,j from the summation since the correspondinig term
vanishes. For this substochastic transition matrix, Fij plays the role of pie in
section 2. It follows at once [compare (2.3)] that

(6.7) Fij(s + t) - Fij(s) = Ejpik(s)Fkj(t), i j.
k

Hence an application of lemma 2 shows that each Fij has a continuous derivative
.fij satisfying
(6.8) fij(s + t) = E jpik(S)fkj(t),

k

anid consequently (6.2) can be improved into

(6.9) pij(t) = fij(s)pjj(t - s) ds, i # j.

It turns out that the formula (6.9) has a dual which has been proved in general
only recently (the case where i is stable being previously known). To motivate
this dualization it is best to consider the discrete parameter analogues.
For each h E TO the stochastic process {xh, n E N} is called the discrete

skeleton of {xa, t E T} at the scale h. It is a discrete parameter homogeneous
Markov chain with the n-step transition matrix (p(j)). Let

(6.10) jp(k)(h) = Pi{x(nh, w) = k, x(vh, c) $ j, 1 < v < n -

be the corresponding taboo probabilities. The analogue of (6.9) is theni
n

(6.11) p (h) jpp)(h)p n > 1,

where jp(')(h) may be denoted by fly) (h) for comparison with (6.9) but is prefer-
ably written as shown with a view to dualization. This is a very old formula and
is basic in the so-called theory of "recurrent events" (see section I. 8 of [1]).
Now in the discrete parameter case the reasoning leading to (6.11) can be im-
mediately dualized by interchanging "i" and "j," "first" and "last," "entrance"
and "exit," to yield the dual:
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n-I
(6.12) p(n)(h) = p((h)ip( n 1.

i'=0

These two formulas (6.11) and (6.12), valid also for i = j, are particular cases
of theorem I. 9.1 of [1]. Since the taboo probabilities can be defined algebraically,
they appear as simple algebraic consequences of the operation of matrix multi-
plication, apart from questions of convergence. Now if (1.4) or the weaker (2.1)
holds, then

(6.13) jp(")(h) _ 1,
n=1

which greatly facilitates the passage to limit in (6.11) as h I, 0. The same how-
ever cannot be said of the series En-l ip)(h). Thus it is desirable to execute the
limit operation without the advantage of (1.4), but making defter use of (1.3).
The main idea is to consider a sequence of h I 0 such that

(6.14) jp()(h) and E ip.7'(h)nh<t nh5t

converge for a dense set of t, in the manner of Helly's selection principle. This
is carried out by Jurkat [5] with a further refinement.
While this method has analytic power, it is unfortunately devoid of proba-

bilistic meaning at the moment. We shall sketch two different approaches based
on considerations of sample functions.

Since (6.9) is obtained by analyzing the first entrance into the final state j,
it is natural to reflect upon the last exit from the initial state i. Let us define on
Ai:

(6.15) -yi(t, c) = sup {s: 0 s _ t,x(s,w) = .

For each fixed t this is a random variable but clearly it is not optional in any
sensible way: to determine if -yi(t, w) _ s we must know x(-, w) up to the time t.
On the other hand, its distribution function is easily written down, if 0 . s < t,

(6.16) ri(S, t) -l Pi{yi(t, w) _ s} = E Pik(S)[l - Fki(t - s)].

Furthermore, for every j $ i we have

(6.17) ri3(s, t) - Pi{-yi(t, w) . s; x(t, c) = j} = E pik(s)ipkj(t - s)

so that, for 0 _ s < t, we have

(6.18) ri(s, t) =Erij(s, t).
joi

For s = t the above equation becomes false. We have

(6.19) pij(t) = fo Pi{x(t, W) = jlyi(t, w) = s} d, ri(s, t).
Now the salient fact here is that the conditional probability in (6.19) turns out
to be a function of t - s only, while the distribution function ri(s, t) has a
density function which is the product of a function of t - s and one of s only.
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To demonstrate these facts by our first method, we decompose the sample
functions x(., co) with x(0, w) = i and x(t, w) = j into subsets according to the
location of -y(t, co). To be precise, for each n let 'y(n)(t, w) be the unique dyadic
number (v - 1)2-n such that

(6.20) x[(v - 1)2-n, ] = i and x(u, w) d i, v2-n _ u< t.

We have limn yin(t, w) = yi(t, w) by separability, and consequently

(6.21) n=li v i{7t (t, w) = (v - 1)2-n; x(t ) j}
nl-4 v<2"t

= lim E pii((v - 1)2-") L pik(2 n)ipkj(t - v2-l ).
n-- '2t k

The last written sum may be exhibited as

(6.22) Jo qb('(t- s) d in) (S)

where
(6.23) 7ri(n(s) - pii((v - 1)2-n)2-",1 7()s) = 2" E_ pik(2-n)ipkj(s)

Clearly,
(6.24) lim 7r(8 (t) = fo pii(s) ds.

Hence it remains to show that ) (s) converges uniformly in every finite interval
to gij(s) in order to obtain in the limit the desired formula:

(6.25) pij(t) = fo gi,(t - s)pii(s) ds.

By the definition of +'>)(s),
(6.26) gij(8)ipjk(t) = gik(5 + t),

and so by lemma 1 all qij are continuous in T. The convergence of +() follows
from properties of taboo probability functions, only the uniformity causes some
technical difficulty. This plan of attack has been carried out in detail in [1].
The purpose of the r6sum6 above is to show the basic probabilistic idea under-
lying this method.
Our second method shows promise of general applicability, being inherent in

the nature of the stochastic scheme of things. It is that of reversing the direction
of time, or retracing the process. Formally let U E TO and define

(6.27) zU(t, w) = x(U - t, w), 0 _ tI U.

The new process {zu, 0 <_ t < U} is Markovian with the state space I, but has
in general nonstationary transition probabilities. This is one difficulty to be faced
in this approach, the other one being the dependence on U. But these difficulties
may also give us new clues.
For the sake of simplicity let us suppose that pi = 1. Then if 0 < s _ t < U

we have
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__~~~~~~~iU- s) (i,1 s).
(6.28) p(s~, t; *j, i) - P-'z'(t_ &,)) iZt' (.8 w) = *fl 7i(( - t)
The first entrance time distribution form j to i, starting at time s, is also easily
written down:

(6.29) FU(s, t; j, i) d P{zu, c) = i for soime U e [s, t1]zU;(s, co) = jf

,((j - S) _ Pi(LJ- t)ipkj( - S)

= 1- (- -t, U -s

Now the reversed Markov chain (if the proper veersioni is takeln) also possesses a
strong Markov property, a particular case of which is the first enitrance formula
generalizing (6.2),

(6.30) p (s, t; j, i) = |p(u, t; i, i) du FL-(s, u; j, i).

For a proof of this see [2]. Substituting from (6.28) and (6.29) we obtain

(6.31) pij(t- s) = pii(t- u) d,, rij(U - u, U - s)
it ~~~pii(U - t

or

(6.32) pij(t) = J0 p (t -u) du I ij(ZJ-s- , U -s)
pi - s - u)

if t _ U - s. This being so it is reasonlable to conjecture that the measures in u
generated by Fij(U - u, U)/pii(U - u) for different values of U - u coincide,
namely, there exists a nondecreasing function Gi, on T such that

(6.33) d d,, F1(U- U, U) dGij(t)
J2 pii(UU u) I

for 0 _ ul _ u2 < U. This is indeed true by a knownl, though formidable, theo-
rem due to Titchmarsh [10], p. 328. (For a proof by real variable method, see
Mikusinski [6], chapter 7.) We have by (6.17) and (6.6)

(6.34) E rij(U - U, U)ipjk(s) = rPk(U - U, U + S).

Hence for 0 _ u2 _ Ul _ U -s,

(6.35)
U d ip ( u) ipjk(S)

ul pli(U -
(6.35) i2 p. i(U -

u
U) 2

d pIXk(U -u,U )

8+U- du rik(U + s - u, U + s)
Js+U2 p7i(U + s - U)

fs+ui du rik(U - u, U)
js+1z2 pii(U - )
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where the last equation follows from (6.33).1This is equivalent to

(6.36) E [Gij(u2) - Gij(ul)]ipjk(s) = Gik(s + U2) - Gik(s + ul).
j

Thus by lemma 2 (see the remark there) each Gi has a continuous derivative gi,
in T satisfying (6.26). Substituting back into (6.32) we obtain (6.25).

Incidentally, we have shown that rij(U - u, U) has a derivative with respect
to u in [0, U] which is equal to pii(U - u)gij(u), verifying the remark after
(6.19). This can also be deduced from (6.25) and (6.26) since by (6.17) we have

(6.37) rij(s, t) = Ef, pii(U)gik(S - U)ipk3(t - s) du

= 10 pii(u)gij(t - u) du.

Summing (6.25) over all j $ i, we see that

(6.38) 1 -pii(t) = f0o gi(t - s)pii(s) ds,

where gi = yj,i gij. This integral equation for pii can be made as the starting
point of another proof of Ornstein's theorem [8] on the continuous differenti-
ability in TO of all pij of a transition matrix. Such a proof is given by Jurkat [5]
without the use of (1.4). He has also indicated a proof which is based on (6.9)
instead of (6.25). It can be shown moreover that the series in (5.14) and (5.19)
converge absolutely in TO [without the condition (1.4)] and so does that in (5.12)
if (1.4) is assumed. However the following problem is open: if i is instantaneous,
is it true that
(6.39) lim ptt(t) =-?=-oc?

tf~o

The answer is "yes" if i is stable, as a consequence of (5.11) and the existence of
rii(0+) = 0. This problem is particularly interesting since almost every sample
function x(-, w) with x(0, w) = i "oscillates tremendously" at t = 0, while it is
not even known if pii is monotone in a neighborhood of zero.

I take this opportunity to correct an oversight (p. 270 of [1], lines 4 to 5)
brought to my attention by Reuter. For every i and j, we have

(6.40) lim p' (t) = 0.

This follows by fixing a positive t in equation (27) there, let s -X oc according to
theorem II. 10.1, and use the inequality in (28) to justify uniform convergence
with respect to s. The existence of the limit in (6.38) implies that it is equal to
zero.

7. The minimal chain
Returning to section 5, we now wish to study what happens at the exact

moment of exit from a stable state i. Noting that (4.10) remains in force at
t = 0 but, instead of (5.10), we have by Fatou's lemma
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(7.1) P{y(0, C)E I101} = E rij(O) < 1.

Since

(7.2) rij(0) = (1- iji
qi

by (5.2) and (5.11), this amounts to the easy analytic result

(7-3) E_ qij _qi.

If strict inequality holds above, then with a probability equal to 1 -
_j rij(O) > 0 we have y(O, w) = a). We recall that oo is the "point at infinity"

adjoined to compactify I to render the process separable. For a general optional
a and the post-a process {y}, y(0, w) = X if and only if lirnt a(<") x(t, w) = ,
on account of (1.8). On the set of w for which this is true the process {yt} does
not have an initial distribution (on I), and is a Markov chain only in TO; see
(2) of section 4. It is important to note that
(7.4) P{y(t, w) E I|Qa} = 1, t E TO,
is part of the assertion of the strong Markov property. The above conclusions
may be stated as follows: at the first exit time a(w) from the stable state i, the
probability of a pseudojump to j (F6 i) is ri,(O) = qil/qi, and the probability of a
pseudojump to Xo is 1 - ji (qij/qi). We say "pseudojump" rather than
"jump," since if j is instantaneous the sample function does not have a jump in
the usual sense but shows the following behavior,

(7.5) 1im x(t, w) = j < o = Eim x(t, w).
t t ar(c) 4t4a(w)

We have thus a complete analysis of the first discontinuity of a sample func-
tion which starts at a stable state. To continue this process, we shall assume that
all states are stable and that equality holds in (7.1) or (7.3) so that a pseudojump
to j is a genuine jump and the possibility of a pseudojump to X is excluded.
Finally we suppose that there is no absorbing state to omit trivial modifications.
These assumptions are summed up as follows:
(7.6) 0 < qi = _ qij<o,i<I.

joi

The preceding analysis then implies, by an induction on the number of jumps,
that there are infinitely many jumps of the sample function

(7.7) rI(w2) < ... < rn(lw) < *--

Let us put also 70(w) = 0 and

(7.8) xn(w) = x(Tn(W), W) = uiM x(t, W)-
t 4 (c.)

It is easy to verify that each r7 is optional with P{JQr} = 1. (One may use in
this connection theorem II. 15.1 of [1], but that is not necessary.) It follows
from (1) of section 4 that
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(7.9) P{x.+i(w) = in+llxv(w) = i,, 0 :5- v 7 } = P{X,+i(w) = in+1lxn(w) = iJn}.
Applying the preceding analysis of the first discontinuity to the post-r. process,
we see that the right member of (7.9) is equal to risi.,(O). Hence {Xn, n E N} is
a discrete parameter homogeneous Markov chain with the one-step transition
matrix (rij(0)). Furthermore it follows from (5.3) applied to the post-rn process
that

(7.10) P{rn+1(W) - rn(w) < tlXv(w), 0 _ v _ n - 1; Xn(w) = t} = e,l(t).
Now let
(7.11) rT(w) = lim Tn(w)-

7L-* 0

Then it is clear from the definition that for almost all w,

(7.12) T00(w) = sup {t: x(., w) has only jumps in (0, t)}.
We call r00 the first infinity of the M.C. Since {X: Tm(w) < t} E a, by the defi-
nition of optionality, we have {w T(w) < t} E at by (7.11). Hence T:, is op-
tional. Let
(7.13) Li(t) = Pi{rT(w) < t-

Let 0(tl, t2) denote the set {X: x(., w) has only jumps in (tl, t2)}. For any A E
we have, using the optionality of r00,
(7.14) Pi{Jr(w) _ t + t' A; Tr0(w) _ t; x(t, w) = jl-

= Pi{e(t, t + t')Ix(t, W) = j}
= PA{0(0, t')} = Pj{r00(W) > t'".

Consider a new process ftx-{}, t E T° or T as in {xt}, defined as

(7.15) = fx(t, w) if t < (w)
oo if t. T0()

We have then, if iv Ez , 1 < v < n + 1,

(7.16) P{x(t.+1, co) = vn+l|n(tv, w) = 1 _1 _<'

= P{x(tn+, w) = i.+1; T0(C)) > t.+Ilx(t,, w) = iv 1 <V < n; Tr,(wa) > t,

= P{x(tn+1, Co) = in+l; E)(tn, tn+1)1X(tn -) = in

= Pi-{x(tn+ tnx w) = i'+1; 0(0, t+±1 tn)}
If we put
(7.17) pij(t) = Pi{x(t, w) = j; 0(0, t)},
(7.18) pix(t) = 1- pij(t) = Li(t), Pxj(t) = j

then the last probability in (7.16) is pi - t.) and the calculation shows
that {II} is a M.C. Its state space is I and its transition matrix is (-pij) with i
and j in T, provided that P{Tr0(w) = oo} < 1, or equivalently that at least one
Li is not identically zero. Otherwise {-t} coincides with {xt}.
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The process {T} will be called the minimal chain associated with the givenl
{xt}. Our discussion in this section amounts to a probabilistic construction of the
matrix (p,j), called the minimal solution corresponding to Q = (qit). We omit
further properties of this matrix which will not be explicitly used below. But we
note the following equation which follows from our analysis of the first dis-
continuity,

(7.19) Li(t) = fo e-qJ E qijLi(t - s) ds.
ji#

Differentiating, we have

(7.20) li(t) def L'(t)= qijLj(t).

Thus Li has a conitinuous derivative. Introducing the Laplace transform

(7.21) li(X) = L0 e->li(t) dt

and writing 1(X) for the column vector {1i(X)}, we may put (7.20) in the form

(7.22) (xI - Q)l(X) = o.

8. Beyond the first infinity

We continue to assume (7.6). The first infinity TX, clearly depends on the
initial distribution of {Xt, t C T}. Let r' be the restriction of Txr, on the set Ai.
We rewrite (5.6) as

(8.1) pjk(t) = Pi{Ti(w) > t; x(t, w) = k}

+ Ji Pi{x(t, k)= kIrJ(w) = s} dPj {rJ (w) _ }

= p3jk(t) + fo tjk(8, t)lj(s) ds.

In general tik(S, t) is not a function of t - s only, in other words [see (4) of section
4] the two fields Te, and ,'. are not necessarily independent. (The statement
to the contrary effect on p. 235 of [1] is erroneous.) Now for an ordinary state
i C I we have as an easy generalization of (6.2),

(8.2) pjk(t) = ipjk(t) + f0 pik(t - s) dFji (s).

If we replace the i above by oo and revert to our previous notation this would
become, by analogy,

(8.3) pjk(t) = pjk(t) + f0 tk(t - s) dL, (s).

Thus {jk(S, t) should not only be a function of t - s only but also be independent
of j. The second assertion would mean the extension of the Markov property to
where x(rT(w), w) = oo, which is not asserted by the strong Markov property.
The failure of (8.3) in general shows that the so-called fictitious state X cannot be
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treated like a single ordinary state, and calls for a recompactification of I. To
illustrate the idea and to speak only heuristically, if only a finite number m of
adjoined (fictitious) states x (v), 1 < v < m; are needed, the situation should be
as follows. To each X (^) corresponds an atomic almost closed set (see section I. 17
of [1]) A(v) of the jump chain {xn, n E N} in section 7, such that
x(r.(w), w) = oo (") iff Xn(w) E A(V) for all sufficiently large n. Let the restriction
of rO0 on the set x(Tr (cw), w) = (") be r. , and let the corresponding post-r.
process be {y<), t C T°}. We put
(8.4) Liv)(t) = Pj{ (w) _t

(8.5) (k)(t) = p{Y( )(t, k)= Q
Then we should have

(8.6) pjk(t) = PJk(t) + Ef| k(')(t - s) dLj() (s)

as an improvement on (8.1). Note that each LJ') satisfies the same equation
(7.20) as Lj and I LJv) = Lj.
In some sense the heuristic equation (8.6) must be contained in results proved

by Feller [3] by function-analytic methods. But the precise identification of the
probabilistic quantities is not clear to us and in any case no probabilistic proof
seems known.

If there is only one bounded nonnegative solution t(X) of (7.22), apart from
a scalar factor (function of X), then m = 1 in (8.6) and the resulting equation
(8.3) can be easily proved (see Reuter [9]). It follows from (4) of section 4 that
in this case W,. and 'x are independent. By (2) of section 4, we have
(8.7) (k(S + t) = (S)Pjk(t).

Hence every tj is continuous in T by lemma 1. Substituting from (8.3), we have

(8.8) &k(S + t) = Etj(s)pjk(t) + | k(t - u) du [ {j(s)Lj(u)].

In analogy with (5.23), we put

(8.9) S.(co) = {t: i x(s,,W) = o}.

We remark in this connection that x(t, w) need not be oo even if lim, t tx(s, w) = at
or lim. i x(s, w) = oo by (1.8); hence the obvious extension of (5.23) for i = X
is not adequate. Next, in analogy with (6.15) to (6.17) but for the post-r, process
{yi, t E T°}, we put for 0 < s _ t:

(8.10) 6.(t, c) = sup {s: 0 < s <g t, y(s, w) C S(W)},
(S. 11) V,(s, t) = P{&o(t, co) < s} = , tj(s)[l - j(t - s)]

=- j(s)Lj(t s),j~~~~~
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(8.12) V.k(s, t) = P{fb(t, w) < s; y(t, w) = k} = E tj(9)Pjk(t).
j

The quantities in (8.11) and (8.12) occur on the right side of (8.8). Letting s I 0,
it is easy to see that the limits below exist

(8.13) M(t) def lim V.(s, s + t) = P{5X(t, w) = },
8 I

(8.14) nk(t) limVk(s, s + t) = P{~6(t, w) = 0; y(t, W) = k}.
8 40

Thus M(t) is the probability that the sample function y(*, w) has only jumps in
(0, t), while nk(t) is the probability that this is so and also y(t, w) = k. Letting
s j 0 in (8.8), we obtain

(8.15) tk(t) = flk(t) + f0 tk(t - u) dM(u).
This is an integral equation of the renewal type for t in terms of n7. By definition
we have

(8.16) 27k(S + t) = Ei qj(s)Pjk(t).

It follows by lemma 1 that 7j(O) exist. Let

(8.17) Pk(t) = 71k(t) - 7j(0)pjk(t)-

Then {fj} satisfies the same equations (8.16) as %, and tj(O) = 0. Multiplying
these equations by the "monotonicity factor" exp (qkt), see section 5, and then
differentiating as in lemma 2, we obtain

(8.18) k(t) = E j(s)j(t - S)

for each t and almost all s _ t. Using the second system of differential equations
for (-pjk) (see section II. 17 of [1]), we conclude that

(8.19) t^(t) = Ej(t)qjk-

Passing to Laplace transforms, the last equation may be written as [compare
(7.22)]
(8.20) ¢(X)(XI- Q) = 0.

The above results check with those of Reuter [9] obtained by function-analytic
methods. Unfortunately it does not represent the most general case treated by
Reuter, because (8.15) reduces to a trivial identity when M = e, or equivalently
when all 7k(t) a 0. However, the following positive result may be stated.

Unless the first infinity r.(co) is a limit point (from the right) of S.(W) with
probability one, the equation (8.15) holds nonvacuously where X and M are deftned
by (8.13) and (8.14), and (8.16) holds.
Suppose M(O+) - M(O-) = /3 where 0 _ d < 1 and let M = llI-F.
Solving (8.15) for {k, we have
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(8.21) (1 - 3) tk(t) = |7k(t - it) dN(u),
where

(8.22) N = Iffn*
n=O

in a notation similar to (5.16). If 3 = 0 then N is the distribution of the time
between two successive points of S.(w), necessarily isolated. If 2k 77k(O) = 1,
then this must be the case and we have the so-called "instant return from
infinity" of Doob (theorem II. 19.4 of [1]). In this case we have rk(t) = 0 for
all k. The other extreme is where vk(t) 3 ,(t) for all k and only a gradual
descenit from infinity is possible.
The random variable 6 (t, ) is the last exit time from oo in (0, t) for the post-TO,

process. If we consider a similar random variable y.,(t, -) obtained by replacing
y with x in (8.10), we are led niaturally to the consideration of the following
quantity, for 0 < s < t

(8.23) 4ik(S, t - 8) _ Pf{y,o(w) _ s; x(t ) = k} = E pij(s)Pjk(t - s)
k

and dually

(8.24) tik(S, t - S) - Pi{,r"(cW) > s; x(t, c) = 1k = E pij(S)pjk(t - S).

Clearly for each t, 4'ik(S, t) is nondecreasing and 'ik(S, t) is nonincreasing in s.
We have

(8.25) bik(O, t) = Tik(t, 0) = pik(t)
and

(8.26) 4uik(t, 0) = {ik(O, t) = pik(t).
This remains true if pij in (8.23) and (8.24) is replaced by pi, such that (ps)
is a substochastic transition matrix and

(8.27) ,0ij(t) <_ pij(t)

for all i and j in I. However, there are analytical difficulties if we try to differ-
entiate 4ik(S, t) or Tik(S, t) with respect to s. Neveu [7] overcomes these diffi-
culties by going to Laplace transforms and we refer to his paper for further
results.
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