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1. Introduction

Let us point out that there is nothing unexpected in this paper. The sole ele-
ment of novelty is the formal description of a simple relation between a chapter
of mathematical logic and mathematical statistics. The word semantic occur-
ring in the title indicates that, roughly speaking, provability or nonprovability
is to be estimated on the basis of truth and falsehood in interpretations in models.
The logical formalism used in this paper is monadic logic introduced by P. R.
Halmos in [2]. In principle it is possible to replace the monadic logic by a more
developed formalism, for instance, by polyadic logic [3]. The elements, the prov-
ability or nonprovability of which is to be estimated, as well as the interpreta-
tions, are chosen at random by appropriate chance mechanisms, hence the whole
problem is probabilistic in nature. The estimation procedures established in
this paper possess a natural optimum property. The study of the behavior of
these procedures at infinity shows that the statistical decision functions of finite
size, which estimate provability are, in fact, asymptotically good approximate
proofs. One may hope that the questions treated in this paper reflect at least the
most elementary features of heuristic reasoning which is so perfectly realized by
the human brain.

All that is necessary for an easy understanding is developed in the paper in
full detail and with intuitive justification. The main reason is that one cannot
expect that, in general, specialists in mathematical logic are familiar with con-
cepts, methods and results of statistical decision theory or that statisticians are
familiar with formalisms of mathematical logic.
The basic concepts and results of statistical decision theory on an appropriate

level of generality are summarized in section 2. These results are then applied
in section 3 to the problem of statistical estimation of belonging relations. The
passage from the considerations of section 3 to the solution of our main problem
of statistical estimation of provability is completely transparent and forms the
contents of section 4.
The present paper, which is closely connected with [8], does not furnish more

than may be intuitively expected and, therefore, its practical value is very
limited. Further developments in this direction, however, will probably throw
some light into the mechanism of human behavior in problem solving.
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2. The Neyman-Pearson theorem
A wide variety of problems of mathematical statistics can be reduced to a

simple application of a classical theorem due to J. Neyman and E. S. Pearson
[5], [6]. It is not surprising that this famous theorem plays a decisive role in our
considerations. Its original version, however, does not fulfil our requirements.
The main reason is that it does not allow the discussion of cases in which more
general sample spaces occur. We shall see later that an adequate generalization
of the Neyman-Pearson theorem can be easily obtained.
Our basic probability space will be denoted, as usual, by (Q, S, eu), where Q is

the set of elementary events, @i the sigma-algebra of random events and u4 the
probability measure on (B. The symbol w will always mean an element of R.
Throughout this paper the notation just introduced will be preserved.
A statistical decision problem is defined to be a pair (so, t) of random vari-

ables, where so takes its values in the parameter space and t ranges over the
sample space. The parameter space is assumed to consist of exactly two ele-
ments, namely 0 and 1, hence, the measurability of sp is assured by the require-
ment that

{@:f(w) = 1} E e.

On the other hand, no restriction will be imposed on the range X of t except
that it is supplied with a fixed sigma-algebra X of subsets of X. The measurable
space (X, X) is said to be the sample space. The transformation t of Q into X
will be called a random sample if

{w:E(co) EE} zS
for every set E from B.
Roughly speaking, a statistical decision is an action determined by the value

of the random sample. This action can be formally described using the concept
of decision function. The domain of a decision function is the sample space and
its range is usually called the space of decisions. In our case, however, the space
of decisions is assumed to coincide with the parameter space, hence, a decision
function a is a function defined on X and taking the values 0 or 1. But this is
not enough. In order to ensure that the compound transformation 5[t()] be-
comes a random variable, it is reasonable to impose on a an additional condition
of measurability, namely,

{x:a(x) = 1} E x.

A natural manner of how to evaluate statistical decisions with respect to the
random occurrence of parameters is the convention that

({w:,(w) = nw1}l{w:5[c()]= o}) u ({w:P(w) = }n f{w:a[(w)] = 1})
means the random event of incorrect decisions.
Our main question is how to choose the decision function a in order to make

the probability of the random event of incorrect decisions as small as possible.
The answer is quite satisfactory.
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THEOREM 1. There always exists a statistical decision function which mlinimizes
the probability of the random event of incorrect decisions.
The proof is a simple application of the Hahn decomposition theorem [4].

Let us write

v(E) = [{:() = 1} n r1(E)] - u[{w:9(w) = o} n $'(E)]
for every E from I. Clearly, v is a signed measure on X. It is well known that
there exists a set H from X such that v(H n E) > 0 and v(H' n E) < 0 for
every E from X, where H' = X - H. Since

v(E) = v(H n E) + v(H' n E) < v(H) + v(H' n E) < v(H)
for every E from X, hence the number v(H) is the maximum of v on X. Now let
us define the decision function i3 by the requirement that

{x:fl(x) = 1} = H.

Since for every decision funiction a the probability of the random event of in-
correct decisions is equal to

{Uf(:P(W) = 1} - v{x:6(x) = 1}
hence, using the fact that ,B is determined by the Hahn decomposition (H, H')
of v, we can write

jC:1P(W) = 1} -V{X:$(X) = 1} < M{W:sO(W) = 1} - v{x:S(x) = 1}

for every decision function 6, Q.E.D.
The decision function ,B, whose existence is assured by theorem 1, is said to be

the Bayes solution of the statistical decision problem (so, t).
It is easy to verify that the signed measure v is absolutely continuous with

respect to the probability measure At-I in X, hence, using the Radon-Nikodym
theorem [4], we can state that there exists a real valued measurable function h
on X such that

v(E) = JR h(x) djut'
for every set E from X. We see at once that the set

{x:h(x) > 0}
and its complement determine a Hahn decomposition of. v and this is in fact the
content of the Neyman-Pearson theorem. It is, however, more appropriate to
formulate this theorem in terms of the measurable functions h+ and h- defined
for every element x of X and every set E from I by the equations

M({w:'P(w) = 1} n t'(E)) a f h+(x) dt,u4,
E

A({ P(.) = o} n t'(E)) = (1-a) f h-(x) dyu'
where

a = ,.{w:fo(w) = 1}.
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The number a is said to be the a priori probability in the parameter space.
Clearly, if a > 0 then h+ is a conditional probability density and if a < 1 then
h- is a conditional probability density. Since

At {x: h(x) = ah+(x) - (1 - a)h-(x)} = 1,
the Neyman-Pearson theorem can be formulated as follows:
THEOREM 2. The statistical decision function f3 determined by the relation

{x:,B(x) = 1} = {x:ah+(x) > (1 - a)h-(x)}
minimizes the probability of the random event of incorrect decisions.

In applications of this theorem the densities h+ and h- are always assumed to
be known, hence the Bayes solution ,B of the statistical decision problem (O, t)
depends only on the a priori probability a in the parameter space.
Now we shall introduce the abstract substitute of the concept of sample size.

The classical model shows that one of the most important consequences of the
reduction of sample size is a restriction imposed on the measurability of the
decision functions. This fact motivates our definition of the size of a decision
function.

Let I1, L, L, * be a nondecreasing sequence of sigma-algebras of subsets
of X and suppose that the union

U Xn
n=1

is a base of the sigma-algebra X. This sequence will serve as a scale of the sizes
of decision functions.
The decision function 6 is said to be of size n if it is measurable with respect

to the sigma-algebra n, that is, if

{X:6(X) = 1} E In
but it is not measurable with respect to the sigma-algebra X1 for m=
1, 2, * * *, n - 1. We shall say that a is of finite size if there exists a positive
integer n such that a is of size n. The decision function 8, which is by definition
measurable with respect to the whole sigma-algebra X, is said to be of infinite
size if it is not of finite size. Clearly, if there exists a decision function of infinite
size then, roughly speaking, the scale X1, 12, 13, * must have effectively an
infinite number of divisions.

Denoting by A the set of all decision functions in X and by A,, that of all
decision functions in X at most of size n for n = 1, 2, 3, * , we see at once that

A1C A2 C A3 C ... C A,

hence, if e is the probability of the random event of incorrect decisions associated
with the Bayes decision function ,B from A and en that associated with the Bayes
decision function 13n from An for n = 1, 2, 3, * then

El _ e2 e3 _ -- >_ e

that is, as may be intuitively expected, the least probabilities of making incor-
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rect decisions do not increase whenever the sizes of the decision functions
admitted to the concurrence increase to infinity.
By theorem 2 a Bayes decision function f,B of size n is determined by the

relation
{x:#3n(x) = 1} = {x:ah+(x) > (1 - a)hn (x)}

for n = 1, 2, 3, * , where h+ and hn are defined using the sigma-algebra 1. in
the same way as h+ and h- were defined using the whole sigma-algebra X.
The main effect of increasing the sample size can be expressed as
THEOREM 3. The sequence of random variables ht [( *)], h+ [t(*)], h+ [t(*)], * * -

converges to the random variable h+[t(*)] with probability one, the sequence ofrandom
variables hi-[t(-)], hj [t(-)], h3-[t(.)], * * * converges to the random variable h-[t(-)]
with probability one, and the sequence el, 62, E3, * * -of probabilities of the random
event of incorrect decisions, associated successively with the Bayes decision functions
l,j2,(3B, .* * converges to the probability e of the random event of incorrect decisions
associated with the Bayes decision function 13.
The first two assertions of theorem 3 are immediate consequences of a well-

known martingale theorem [1] and the last assertion is contained in [7] as a
particular case.

Let us note that if e = 0 then the last assertion of theorem 3 expresses the
well-known property of consistency of the Bayes decision functions ,1, 32, 13, *--

3. Statistical estimation of belonging relations

A wide variety of questions concerning statistical estimation of provability
possesses a common statistical structure of very elementary nature and this
fact enables us to treat the basic statistical problem separately and independently
of any consideration belonging purely to the domain of mathematical logic.
After establishing the general results it remains only to interpret them appro-
priately in order to obtain the desired final answer to various questions of
statistical estimation of provability. The realization of this last step is, however,
rather only a routine matter.

Suppose that one wants to decide whether an element chosen at random by an
appropriate chance mechanism from a fixed set A belongs or does not belong to a
fixed nonempty proper subset M of A.
The random variable q taking values in A is assumed to be a formal substitute

of our basic chance mechanism. One of the most natural requirements concerning
measurability is

{W:n(w) E M} E e

The direct observation on M is replaced by observations on the subsets Q(m)
of A for m = 1, 2, 3, * , hence, it is also natural to impose on X an additional
condition, namely,

{w:n(w) E Q(m)} EE
for m = 1, 2, 3, * and this completes the definition of the random variable tq.
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Now let T be an ordinary random variable taking on values of positive integers.
The compound transformation Q[T(.)] is a random variable in the sense that

(1) {w:p E Q[T (,w)]} E (
for every element p of A. This follows from the obvious identity

{w:p E Q[T(c)]} = U {CT(C) mj,
j=1

where mj is the jth positive integer for which p E Q(mj).
Clearly,

{: )Q[r(C.t)] = U [{Cw:n7(co) c Q(m)},f -,:r(w) = mri];mn= 1
hence we can state that

(2) {w:,7(w) C Q[r(c)I, E C
and this is the most important fact concerning the relation between the two
kinds of random variables.

In elementary set theory the relation p C M is often expressed in terms of the
characteristic function c of M by the equivalent statement that c(p) = 1. A
slightly more complicated concept is that of the characteristic function of a ran-
dom set. If, for each m = 1, 2, 3, . , c(m) denotes the characteristic function
of the set Q(m) then by (1) the compound function C[T(-)] is an ordinary random
variable taking the values 1 or 0. The random variable c[T(-)] is said to be the
characteristic function of the random set Q[r(-)]. The element p of A belongs to
Q[T(w)] or to its complement A - Q[T(w)] according as c[T(w)](p) = 1 or
C[T(w)(p) = 0.

Clearly, the compound transformation c[71(-)] is an ordinary random variable
taking the values 1 or 0. The value of iq at w belongs to M or to its complement
A - M according as c[71(w)] = 1 or c[q(w)] = 0. By (2) the compound transfor-
mation C[T(-)][17(-)] is an ordinary random variable taking the values 1 or 0.
The value of I at w belongs to Q[r(w)] or to its complement A - Q[i-(w)] accord-
ing as c[Tr(w)][fl(w)] = 1 or c[Tr(C)][tq(w)] = 0. We have thus defined a probabil-
istic extension of belonging relations.

In order to simplify the notation we shall write s(.) instead of c[17(-)] and
x(-) instead of C[T(-)][n(-)].

Let X be the set of all sequences x = (X1, X2, X3, ) every term of which is
either equal to 1 or 0. Coincidence in the first n terms of sequences from X is an
equivalence relation in X. The class 3n of all unions of equivalence sets induced
by this equivalence relation is a complete algebra of subsets of X for every
n = 1, 2, 3, - - - . The sets from X, are called n-dimensional cylinders. Our
basic sigma-algebra X of subsets of X is that induced by the union

U Xn.
n=1
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Let Ti, T2, T3, ... be a sequence of integral-valued random variables. Then
the sequence

= (Xly X2, X32 ...

whereXn(*) = c[rn(.)]IIn( )] for n = 1, 2, 3, , is a random vector with values
in X. Clearly, X is the smallest sigma-algebra of subsets of X for which the
vector t is measurable.
Now the ground is prepared to put the traditional machinery of statistical

decision functions into action. The passage from the general scheme of statistical
decision to our particular case is very simple because the notation of section 2 is
preserved. As has already been pointed out in section 2, the Bayes solution of a
statistical decision problem depends on the a priori probability in the parameter
space. We shall see, however, that, as compared with the general case, our par-
ticular version of the statistical decision problem is, roughly speaking, less sensi-
tive to the exact knowledge of the a priori probability, provided that a very
simple and natural condition, namely,

(3) M C Q(m)

for m = 1, 2, 3, * * ,is satisfied. We shall see that under this condition either
the decision function # which associates with every sample point x of X the
decision 0, or the decision function #,B which associates with the sample point x
of X the decision 1 or 0 according as the first n coordinates of x are equal to 1
or at least one of these coordinates is equal to 0, can occur. More precisely
THEOREM 4. Under (3) the Bayes solution of size n of the statistical decision

problem ((p, t) is determined by the decision function # or O and the probability of
the random event of incorrect decisions is equal to

(4) (1 - a)hn (1, 1, * * , 1, Xn+2, ** *)

or to a according as

)hn (1, 1, *,1, Xn+l Xn+2 .. ) < -a
or the opposite inequality holds.

The details of the proof can be omitted because theorem 4 is nothing else
but a particular version of theorem 2. It suffices to note that, as compared with
theorem 2, the main simplification arises from (3) and from the definition of X,
3n and t. Under these conditions h+ (x) = 1 or 0, according as the first n co-
ordinates of x are equal to 1 or one at least of these coordinates is equal to 0,
and 0 _ hn (x) < 1 for every x from X, hence theorem 2 is immediately ap-
plicable.

In order to make the intuitive content of the theorem just established more
transparent we shall give the informal description of an experimental procedure
of how to estimate that an element of A chosen by q belongs to M or to its
complement A - M using the Bayes decision procedure of size n, that is, that
determined by the random variables Tr, T2, * * *, Tn. Whenever the inequality (5)
does not hold then the value of q is always estimated to belong to A - M.
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If (5) holds then the decision procedure runs as follows: At the first step we
choose the set Q(m) determined by the value of ri. If the value of q does not
belong to this set, the procedure is stopped and the value of v is estimated to
belong to A - M. In the opposite case we continue the inspection choosing the
set Q(m) determined by the value of T2. If the value of q does not belong to this
set, the procedure is stopped and the value of 7 is estimated to belong to A - M.
In the opposite case we continue the inspection choosing the set Q(m) deter-
mined by the value of r3 and so on. Exhausting all the sets Q(m) determined
successively by the values of Ti, r2, ... , rn without reaching the decision that
the value of q belongs to A - M we accept the decision that the value of q
belongs to M. We see that the final decision that the value of 1 belongs to
A - M can be reached at every step of the decision procedure. On the other
hand, the opposite decision that the value of 11 belongs to M can be reached
only at the last step.
Now we shall show that under the two additional conditions

(6) n Q(m) =
m=l

(7) s[ n u {Gow:r(,w) = m}] = 1,
m=1 n=l

the Bayes solution of the statistical decision problem (,, t) becomes asymptot-
ically independent of the a priori probability a.
Roughly speaking, condition (6) together with (3) express the natural require-

ment that the approximation of M by the successive intersections of the sets
Q(m) can be arbitrarily close and the condition (7) means that the sequence
Ti, T2, T3, * exhausts with probability one the whole set of positive integers.
For instance, condition (7) is satisfied whenever the integer valued random

variables TI, T2, 3*, - are mutually independent, identically distributed, and
such that

M{w:Ti(c) = m} > 0
for m = 1, 2, 3, ..

Clearly, under the last condition,

n {W:rn(W) d m}] = [;4{w:Tr(c) #d ml

s{co:ri(w) 5 m} < 1,
fork =1,2,3, ,m = 1,2,3, * ;hence,

[An {W:rn(w) i m}] = 0

for m= 1, 2, 3, ,that is,

y [ u n {C) T(C) # m}] = 0
omv-e nvhl

or, equivalently, (7) holds.
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Our theorem 4 can be completed as
THEOREM 5. If a > 0 and the conditions (3), (6), (7) are satisfied then there

exists a positive integer k such that P. is the Bayes solution of size n of the statistical
decision problem (p, t) whenever n > k.

Since by theorem 3 hn [t(.)] -+ h-[t(.)] with probability one as n -x oo, hence,
by theorem 4 and by the assumption a > 0 of theorem 5 it suffices to show
that h-(1, 1, 1, * * *) = 0, that is, that

(8) IA ({w: ?(w) C A - M} n {w:ti(w) E Q[r(w)]}) 0.

In order to simplify the notation we shall write

n U {co:r (co) = m} = G.
m-1 n=1

It follows from (6) that

Gn w{ w:(w) ECA - M} n {n:1(w)C flQ[rn(w)1} = 0,

hence

JLGnl {co:n(w) C A - M} fl{C:7(c) C n Q[Tm(w)]}) = 0,
and since by (7) ,u(G) = 1, we obtain (8), Q.E.D.

Let us denote by ,B the decision function which associates with every sam-
ple point x from X the decision 1 or 0, according as x = (1, 1, 1, *--) or
x F (1, 1, 1, * *.). By theorem 2, ,3 is the Bayes solution of the statistical deci-
sion problem ((p, t) with respect to the whole sigma-algebra X, hence it is of
infinite size. Since the probability of the random event of incorrect decisions is
equal to zero, the decision function j3, in fact, becomes a proof that the value
of v belongs to M or to its complement A - M.
Now we shall introduce a function I on Q whose values are positive integers

or Xo as follows:
{C:1((W) = 1} = {W:Xl(W) = °},

n-1
{ow:1(w) = n} = {w:xn() = 0} rn n {w:xj(w) = l}

j=1
for n = 2, 3, 4,* ** and

{W:l(w) = oo} = n {w:xn(wo) = 1}.
n=l

We see at once that 1 is an ordinary random variable, provided that the defini-
tion is modified in such a way that the possibility

JA{w:1(w) = oo} > 0
is not excluded.
The random variable 1 is said to be the length of the decision function ,B.
THEOREM 6. If conditions (3), (6) and (7) are satisfied then the length of the

decision function j3 is infinite with conditional probability one under the condition
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that the value of I belongs to M and it is finite with conditional probability one under
the condition that the value of iq belongs to A - M.
By the definition of 1,

f{W:1(CW) = oo}I{f:7(W) E M}]

= a!M({(f 7(,w) EM} nf{w:(M) E n (W)I
Using the conditions (3), (6), and (7), we see that (8) holds, hence the first
assertion of theorem 6 is an immediate consequence of (8). Since, in addition,

f{w:l(w) = o}I|{f: n(.) & A - M}]

1-I 8 ( {t: 1(.) E A -M} n {@: (w) En Q[ () I

the second assertion of theorem 6 follows at once from (8).
Let us note that under the assumptions of the theorem just proved it is not

true that the conditional moments of 1 under the condition that the value of 11
belongs to A - M are finite, that is, the analogue of theorem 2 in [8] does not
hold. This disadvantage, however, can be removed by adding further restrictive
conditions.

4. Semantic concepts

The statistical decision problem of section 3 is based on observations on the
sets Q(1), Q(2), Q(3), .. which replace the direct observation on M. The most
natural way of how to get the sets Q(1), Q(2), Q(3), * - * is the effect of reduction
of resolving power in A which can be formally described by an appropriate ap-
plication of equivalence relations.
A binary relation R in the set A is said to be an equivalence relation if it is

reflexive, symmetric and transitive. Every equivalence relation in A induces a
partition of A into equivalence sets and vice versa. Two elements p, q of A
belong to the same equivalence set if and only if pRq. The equivalence relation S
in A is said to be finer than R and we shall write S < R if pSq implies pRq or,
in other words, if every equivalence set induced by S is included in at least one,
hence in exactly one, equivalence set induced by R. Clearly, the set of all equiv-
alence relations in A is partially ordered by < and the identity I is the finest
equivalence relation.
The formal description of reduction of resolving power by equivalence rela-

tions is intuitively justified by the convention that two elements of A which
belong to the same equivalence set cannot be distinguished. Under this conven-
tion it is reasonable to introduce the concept of closure MR of M1 induced by
the equivalence relation R, requiring that

MR = U {p: pRq}f
qCM
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Clearly, M' = M, that is, the application of the identity I on M has no effect,
and MR C Ms, whenever R < S.

Let R1, R2, R3, * be a sequence of equivalence relations in A. Putting
MR, = Q(n)

for n = 1, 2, 3, * , we see that, in fact, the decision problem of section 3 is
based on observations at reduced resolving power. This artificial reduction of
resolving power is justified by the fact that, in general, MR has a simpler struc-
ture than MS, whenever S < R.
The application of the elementary facts summarized in section 3 to our main

question of statistical estimation of provability by interpretations in models
requires a number of restrictions which must be imposed on the sets A and M
and on the equivalence relations R1, R2, R3, * - .

First of all we shall suppose that A is a Boolean algebra. As usual, we shall
denote by 0 and 1 the zero and unity of A, by p' the complement of the element
p of A, by A the operation of forming the greatest lower bound, and by V that
of forming the least upper bound in A.

In order to eliminate misunderstandings we recall that the subset M of A
is said to be a Boolean ideal in A if it contains the greatest lower bound of any
two of its elements as well as the least upper bound of any two elements of A
one at least of which belongs to M. The algebraic structure just defined is
usually called dual Boolean ideal. We shall, however, omit the suffix dual be-
cause no other ideals will occur in this paper.
The relation R defined in A is said to be a Boolean congruence relation if it

is an equivalence relation which, in addition, satisfies the condition
(9) pRq implies p' V rRq' V r.
The simplest algebraic structure, which enables the treatment of propositional

functions of mathematical logic and for which the concept of interpretation is
natural, is that of monadic algebra introduced by P. R. Halmos [2].
A monadic algebra is a Boolean algebra A together with an operator v which

assigns to every element p of A an element Vp of A in such a way that
vl = 1,
Vp < p

for every element p of A, and

V(p V Vq) = Vp V vq
for every p and q in A. The operator y is said to be the universal quanitifier in A.
A subset M of a monadic algebra A is said to be a monadic ideal in A when-

ever M is a Boolean ideal in A and

p E M implies Vp E M.

A monadic ideal M in the monadic algebra A is called maximal if it is proper,
that is, if M $ A and M is not a proper subset of any other proper ideal in A.
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The relation R defined in the monadic algebra A is said to be a monadic con-
gruence relation if it is a Boolean congruence relation and if, in addition,
(10) pRq implies vpRvq.
A monadic congruence relation R in the monadic algebra A is called simple

whenever the monadic residual class algebra A (R) of A modulo R is simple, that
is, when there is no proper monadic ideal in A other than that containing the
sole element 1.
The relevant properties of closures of monadic ideals will be expressed by the

following lemma:
If M is a monadic ideal and R a monadic congruence relation in the monadic

algebra A then the closure MR of M induced by R is a monadic ideal in A. If, in
addition, R is simple then either MR = A or MR is maximal.
We shall first show that MR is a Boolean ideal in A. Let p C MR and q E A.

By the definition of the closure MR of M, there exists an element rp of M such
that rpRp. By (9) rp V ORp' V 0, that is, rpRp'. Hence rp V qRp V q. SinceM
is a Boolean ideal in A, we have rp V q E M, hence p V q C MR. Now let us
suppose, in addition, that q C MR. Then there exists an element r, of M such
that r,Rq. By (9) we have

r4 V r'Rp' V r', p' V r4Rp' V q',
and hence

(rp V r,)' V OR(p' V r')' V 0,
(p' V r4)' V OR(p' V q')' V 0

or, equivalently,
rp A rqRp A r,,,
p A rqRp A q,

and, using the transitivity of R, we obtain
rp A rqRp A q.

Since M is a Boolean ideal in A we have rp A r, E M, hence, p A q C MR. We
see that MR is a Boolean ideal in A. Now it remains to show that MR is a monadic
ideal in A, that is, that vp E MR whenever p C MR. Since rpRp, it follows from
(10) that Vr,RVp, hence, using the assumption that M is a monadic ideal in A,
we have yrp E M and, consequently, vp E MR. This completes the proof of the
first part of our lemma. If R is simple then, by the definition of simplicity, the
class of all congruence sets which have a nonempty intersection with M is equal
either to A (R) or to the monadic ideal {1} in A (R), hence, either MR = A or
MR = {p:pR1}, Q.E.D.
A monadic logic is a pair (A, M), where A is a monadic algebra anid M is a

monadic ideal in A. The monadic logic (A, M) represents a deductive theory
in A. The elements of A which belong to M are called provable. If R is a simple
congruence relation in A then the closure MR Of M induced by R is said to be an
interpretation of M in the model A (R). If an element p of A belongs to the
interpretation MR of M we shall say that p is true in that interpretation and
otherwise that it is false.
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The monadic logic (A, M) is said to be semantically consistent if there exists
at least one interpretation of M in a model.

Since M C MR, we can state that a provable element of A is true in every
interpretation. Whenever the opposite conclusion is possible then the monadic
logic (A, M), is called semantically complete. More precisely, the monadic logic
(A, M) is said to be semantically complete if M is equal to the intersection of
all its interpretations.
For our purposes, however, a restricted version of semantic completeness is

more appropriate. Let e0 be a class of interpretations of M. The monadic logic
(A, M) is said to be semantically Z2-complete, whenever

M= n Q.
QCc

In order to eliminate degenerate cases it is natural to assume that the monadic
logic (A, M) is semantically consistent and semantically £:-complete. Clearly,
the assumption of semantic consistency can be replaced by M d A and, by our
lemma, there is no restriction of generality if we assume that the interpretations
from e are maximal monadic ideals.
The estimation of provability or nonprovability of elements of a monadic

logic is based upon the inspection of its truth or falsehood in interpretations in
models. Since to each interpretation Q from e there corresponds a simple
monadic congruence relation RQ such that Q = MRQ, the idea of artificial reduc-
tion of resolving power by simple monadic congruence relations is justified by
the fact that, by the lemma, the induced closures are maximal monadic ideals
which evidently have an extremely simple algebraic structure.
The application of the results established in section 3 to the question of

statistical estimation of provability in monadic logic requires a further restric-
tion, namely, that CD is denumerable. In this case we can write

= {Q(1), Q(2), Q(3), *
The random variable q chooses an element of the monadic algebra A, the

provability or nonprovability of which is to be estimated on the basis of in-
terpretations of M chosen from e by the random variables T1, T2, *,Tn.
One may intuitively expect that the following decision procedure is the most

favorable one. At the first step we choose the interpretation Q(m) determined by
the value of Ti. If the value of tq is false in this interpretation, the procedure is
stopped and the value of tq is estimated to be nonprovable. In the opposite case
we continue the inspection choosing the interpretation Q(m) determined by the
value of T2. If the value of q is false in this interpretation, the procedure is stopped
and the value of tq is estimated to be nonprovable. In the opposite case we con-
tinue the inspection choosing the interpretation Q(m) determined by T3 and so
on. Exhausting all the interpretations Q(m) determined successively by the
values of T,T2l, Tn without reaching the decision that the value of 11 is
nonprovable we accept the decision that the value of q is provable.

In fact, the decision procedure just described minimizes the probability of
making an incorrect decision only if the a priori probability a that tq chooses a
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provable clemenit of At is sufficiently large. Whenever a is small then the de-
generate decision procedure which always estimates the value of iq to be non-
provable is better. The exact discrimination between these two decision pro-
cedures is contained in theorem 4.

If the a priori probability a is positive, if the values of the random variables
Ti, T2, T3, * * exhaust with probability one the whole set of positive integers, and
if the monadic logic (A, M) is C-complete then, by theorem 5, for a sufficiently
large number of interpretations to be inspected, the nondegenerate estimation
procedure is the most favorable one in the sense that the probability of making
an incorrect estimate becomes a minimum. Let us note that the condition of
sem-antic consistency is in this case always fulfilled automatically wvhenever
a > 0 anid (A, Al) is semantically s-complete.

In the language of monadic logic the decision funietioni d of infinite size occur-
ring in theorem 6 is said to be the heuristic reasoniing about the element of A
chosen by -q anid the randoml variable 1 is called the length of the heuristic
reasoning :.
The content of theorem 6 cail be expressed as follows: If a > 0,-if the values

of the random variables Ti, T2, T3, * * * exhaust with probability one the whole set
of positive integers and if the monadic logic (A, M) is seimantically --complete,
then the length of the heuristic reasoning about the value of i7 is infinite with
conditional probability one under the condition that a provable element of A
has been chosen by ij and it is finite with conditional probability one under the
condition that the element of A chosen by iq was nonprovable.

Clearly, only the last assertion is practically effective because only nonprov-
ability can be discovered after a finite number of steps. On the other hand, this
pessimistic opinion concerning heuristic reasoning is weakened by the fact that
if provability is estimated then this result is asymptotically good.
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