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1. Summary

This paper attempts to show how the problem of regression analysis of time
series can be treated, using Hilbert space techniques, in a manner which applies
simultaneously to discrete and continuous parameter time series, and also to
multiple time series. The idea of a Hilbert space representation of a time series
and in particular the reproducing kernel Hilbert space representation, is dis-
cussed in section 3. Examples of such representations are given in section 4.
A formula for the probability density functional of a normal time series is ob-
tained in section 5. The problem of maximum likelihood estimation of the mean
value function of a normal time series is treated in section 6. Minimum variance
unbiased linear estimation of the mean value function is treated in section 7.
Tests of hypotheses and simultaneous confidence bands for mean value functions
are given in section 8. A method of iteratively evaluating reproducing kernel
inner products is described in section 9.

2. Introduction

The problem of regression analysis of time series may be formulated as follows.
A model often adopted for the analysis of an observed time series X(t), t E T, is
to regard X(t) as the sum of two functions
(2.1) X(t) = m(t) + Y(t), t E T.

We call m(t) the mean value function and Y(t) the fluctuation function.
The stochastic process Y(t) is assumed to possess finite second moments,

and to have zero means and covariance kernel
(2.2) K(s, t) = E[Y(s)Y(t)].

The mean value function is assumed to belong to a known class M of func-
tions. Very often M is taken to be the set of all linear combinations of q known
functions w,(t), * * *, w,(t). Then, for t in T,
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(2.3) m(t) = 3wi(t) + . + #mwX(t),
for some coefficients f3i, * * , to be estimated.

In regard to the index set T, there are cases of particular importance. One
may be observing (i) a discrete parameter time series X(t), in which case one
assumes T is a finite set of points written T = {1, 2, - ,N}; (ii) a continu-
ous parameter time series, in which case T is a finite interval written T =
{t:0 _ t _ L}; or (iii) a multiple (discrete or continuous parameter) time
series {[Xl(t), , Xk(t)], t E T'} which may be written as a time series {X(t),
t E T} whose index set T = {(j, t):j = 1, , kandt E T'}.

Various methods of forming estimates of m(t) are available. The most im-
portant methods are classical least squares estimation and minimum variance
linear unbiased estimation. In the case of normally distributed observations,
one has in addition the methods of maximum likelihood estimation and minimum
variance unbiased estimation. In this paper we show how Hilbert space tech-
niques may be used to form explicit expressions for these estimates in terms of
certain so-called reproducing kernel inner products.

It is generally accepted that maximum likelihood estimates under the as-
sumption of normality are equivalent to minimum variance unbiased linear
estimates. Many researchers in time series analysis (notably Whittle [16],
[17]) have very effectively utilized this principle to develop a "least squares"
theory of time series analysis (for a lucid statement of this philosophy, see [17],
p. 132). The methods discussed here permit a development of the least squares
theory from first principles.

3. Hilbert space representations of time series

In the 1940's probabilists began to use Hilbert space methods to study time
series. In this section we define the notion of a Hilbert space representation of a
time series, and show the fundamental role played in the representation theory
of time series by reproducing kernel Hilbert spaces.

Definition 3A. Given a time series {X(t), t C T} with finite second moments
we call

(3.1) K(s, t) = E[X(s)X(t)]

its covariance kernel, and

(3.2) K(s, t) = Cov [X(s), X(t)]

its proper covariance kernel.
Definition 3B. By an abstract Hilbert space is meant a set H whose members

u, v, *-- are usually called vectors or points which possesses the following
properties

(I) H is a linear space. That is, for any vectors u and v in H, and real num-
ber a, there exist vectors, denoted by u + v and au respectively, which satisfy
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the usual algebraic properties of addition and multiplication; also there exists
a zero vector 0 with the usual properties under addition.

(II) H is an inner product space. That is, to every pair of points u and v in
H there corresponds a real number, written (u, v) and called the inner product
of u and v, possessing the following properties: for all points u, v, and w in H, and
every real number a,

(i) (au, v) = a(u, v)
(ii) (u + v, w) = (u, w) + (v, w)
(iii) (v, u) = (u, v)
(iv) (u, u) > 0 if and only if u $ 0.

(III) H is a complete metric space under the norm I ulI = (u, u)1/2. That is, if
{u.} is a sequence of points such that ur -u1 -+ 0 as m, n -X o then there is a
vector u in H such that Ilu. - ul12 -O 0 as n -X o.

Definition 3C. We call (Q, B, ,u) a measure space if Q is a set, B is a a-field
of subsets of Q, and ,u is a measure on the measurable space (Q, B). We denote
by L2(Q, B, M) the Hilbert space of all B-measurable real-valued functions defined
on Q satisfying

(3.3) (f,f)A ff2djP<od<
Q

Definition 3D. Let T be an index set, and let {u(t), t E T} be a family of
members of a Hilbert space H. The linear manifold spanned by the family
{u(t), t E T}, denoted L[u(t), t E T], is defined to be the set consisting of all
vectors u in H which may be represented in the form u = , I ciu(ti) for some
integer n, some constants cl, *. . , cn, and some points ti, ** , tn in T. The Hilbert
space spanned by the family {u(t), t E T}, denoted V[u(t), t E T] or L2[U(t),
t E T] if H is the space of square integrable functions on some measure space,
is defined to be the set of vectors which either belong to the linear manifold
L[u(t), t E T] or may be represented as a limit of vectors in L[u(t), t E T]. If
V[u(t), t E T] coincides with H, we say that {u(t), t E T} spans H.
LEMMA 3a. The family {u(t), t E T} spans H if and only if the vector g = 0

is the only vector in H satisfying [g, u(t)] = 0 for every t in T.
Definition 3E. The Hilbert space spanned by a time series {X(t), t E T} is

denoted by L2[X(t), t E T] and is defined to consist of all random variables U
which are either finite linear combinations of the random variables {X(t), t E T}
or are limits of such finite linear combinations in the norm corresponding to the
inner product defined on the space of square integrable random variables by
(U, V) = E(UV). In words, L2[X(t), t E T] consists of all linear functionals in
the time series.

Definition 3F. A Hilbert space H is said to be a reproducing kernel Hilbert
space, with reproducing kernel K, if the members of H are functions on some
set T, and if there is a kernel K on T 0 T having the two properties: for every t
in T, where K(., t) is the function defined on T, with value at s in T equal to
K(s, t),
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(3.4) K(*, t) E H
(3.5) [g, K(., t)] = g(t)
for every g in H.

Definition 3G. Let T be an index set, and let K be a real-valued function of
two variables defined on T ® T. The function (or kernel) K is called a non-
negative kernel if for any integer n, and n points {t1, * , tn} in T, and any set of
n real numbers {a,, a*,a

n n

(3.6) , , aiajK(ti, t,) 0.
i=l j=l

The kernel K is said to be symmetric if, for all s and t in T, K(s, t) = K(t, s).
lt is to be noted that if (3.6) were required to hold for all complex numbers,
then (3.6) would imply symmetry.
THEOREM 3A (see Loeve [11], p. 466). K is the covariance kernel of a tin-e

series if, and only if, K is a symmetric nonnegative kernel.
THEOREM 3B (Moore-Aronszajn [1]). A symmetric nonnegative kernel K gen-

erates a unique Hilbert space, which we denote by H(K), of which K is the reproduc-
ing kernel.
LEMMA 3b. IfK is a reproducing kernelfor the Hilbert space H, then the family

of functions {K(., t), t E T} spans H.
THEOREM 3C. Let K be a covariance kernel. If there exist a measure space

(Q, B, ,u), and a family of functions {f(t), t E T} in L2(Q, B, s&) such thatfor all s,
tin T

(3.7) K(s, t) = f f(s)f(t) d,u,
Q

then the reproducing kernel Hilbert space H(K) corresponding to the covariance
kernel K may be described as follows: H(K) consists of all functions g, defined on T,
which may be represented in the form

(3.8) g(t) = f g*f(t) dl,
Q

for some (necessarily unique) function g* in the Hilbert subspace L2[f(t), t E T] of
L2(Q, B, IA) spanned by the family of functions {f(t), t E T}, with norm given by

(3.9) 119gJ2 = f g*12dl.
Q

PROOF. Verify that the set H of functions of the form of (3.8), with norm
given by (3.9), is a Hilbert space satisfying (3.4) and (3.5).
The definition we give of a representation of a time series is based on the fol-

lowing theorem.
BASIC CONGRUENCE THEOREM. Let H1 and H2 be two abstract Hilbert space .

Denote the inner product between two vectors ul and u2 in H1 by (Ul, U2)1. Similarly,
denote the inner product between two vectors v1 and V2 in H2 by (Vl, V2)2. Let T be an
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index set. Let {u(t), t E T} be a family of vectors which span H1. Similarly, let
{v(t), t E T} be a family of vectors which span H2. Suppose that, for every s and t
in T,

(3.10) [u(s), u(t)]1 = [v(s), v(t)]2.
Then there exists a congruence (a one-one inner product preserving linear mapping)
4' from Hi onto H2 which has the property that

(3.11) 4'[u(t)] = v(t)1, t in T.
PROOF. Define the function 4' from H1 to H2 as follows. For each vector in

the family {u(t), t E T}, define 0[u(t)] = v(t). For each vector u in the linear
manifold L[u(t), t E T], define

(3.12) 4A(u) = , civ(ti) if u = ,ciu(ti).
We need to prove that the mapping 4' is well defined, that is, it needs to be shown
that two different representations of a vector, u = E ciu(ti) = E c'u(t,), lead to
the same value 4,(u) = E cpv(t,) = E c'v(t'). To prove this it suffices to prove
that

(3.13) E ciu(ti) = 0 if and only if E civ(t,) = 0,
which follows from the fact that

(3.14) 0 = II ciu(t,)II1 = E cicj[u(ti,),U(, 1
= E cicj[v(ti), v(tj)]2 = 1FE civ(t,)l12-

From the last equation we see that 4' is a congruence from L[u(t), t E T] onto
L[v(t), t E T]. Consequently, it follows for any sequence {u.} in L[u(t), t E T]
that {u%} is a Cauchy sequence in Hi if and only if {4,(u.)} is a Cauchy sequence
in H2, and lim. u. = 0 if and only if lim. 4'(u.) = 0. Therefore, for u = lim. u.,
define 4'(u) = lim. 4,(u). In this way 4' is defined for every u in Hi. One may
verify that 4' is a congruence from Hi onto H2.

Definition 3H. A family of vectors {f(t), t E T} in a Hilbert space H is said
to be a representation of a time series {X(t), t E T} if, for every s and t in T,

(3.15) [f(s),f(t)]H = K(s, t) = E[X(s)X(t)].
Then there is a congruence 4' from V[f(t), t E T] onto L2[X(t), t E T] satisfying

(3.16) 4A[(t)] = X(t)
and every random variable U in L2[X(t), t E T] may be written U = 4,(g) for
some unique vector g in V[f(t), t E T].

Since K(s, t) = [K(-, s), K(., t)]H(K) = E[X(s)X(t)] we immediately obtain
the following important theorem.
THEOREM 3D. Let {X(t), t E T} be a time series with covariance kernel K.

Then the family {K(-, t), t E T} of functions in H(K) is a representation for
{X(t), t E T}. Given a function g in H(K), we denote by (X, g)K or (9, X)K the
random variable U in L2[X(t), t E T] which corresponds to g under the congruence
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which maps K(*, t) into X(t). We then have the following formal relations: for every
tin T, and g, hinH(K),

(3.17) [X, K(-, t)]K = X(t)
(3.18) E[(X, h)K(X, 9)K] = (h, 9)K,
where we write (h, e)K for (h, 9)H(K).

Definition 3I. Let (Q, B, IA) be a measure space and, for every B in B, let
Z(B) be a random variable. The family of random variables {Z(B), B E B} is
called an orthogonal random set function with covariance kernel ,u if, for any two
sets B1 and B2 in B,

(3.19) E[Z(B1)Z(B2)] = (BIB2),
where, as usual, B1B2 denotes the intersection of B1 and B2.
The Hilbert space L2[Z(B), B E B] of random variables spanned by an or-

thogonal random set function may be defined, as was the Hilbert space spanned
by a time series, to be the smallest Hilbert subspace of the Hilbert space of all
square integrable random variables containing all random variables U of the
form U = ,_I. 1 ciZ(B,) for some integer n, subfamily {B1, * * *, Bn} C B, and real
constants cl, * - *, c". On the other hand, L2(Q, B, A) may be described as the
Hilbert space spanned under the norm (3.3) by the family of indicator functions
(IB, B E B}, where the indicator function IB of B is defined by IB(q) = 1 or 0
according as q E B or q E B. Now for any B1, B2 in B

(3.20) (IBI, IB2), = p(BIB2) = E[Z(B1)Z(B2)].
Therefore, by the Basic Congruence Theorem, there is a congruence ' from
L2(Q, B, IA) onto L2[Z(B), B E B] such that for any B C B,

(3.21) #(IB) = Z(B).
This fact justifies the following definition of the stochastic integral.

Definition 3J. Let (Q, B, ,u) be a measure space and let {Z(B), B E B} be an
orthogonal random set function with covariance kernel ,u. For any function f in
L2(Q, B, IA) one defines the stochastic integral of f with respect to {Z(B), B E B},
denoted ff dZ, by

Q

(3.22) f f dZ = 4(f),
Q

where 4, is the congruence from L2(Q, B, IA) onto L2(Z(B), B E B) determined by
(3.21).
THEOREM 3E. Let {X(t), t E T} be a time series with covariance kernel K. Let

{f(t), t E T} be a family of functions in a space L2(Q, B, ,u), such that (3.7) holds.
Then {f(t), t C T} is a representation for {X(t), t E T}.
Iffurther, {f(t), t E T} spans L2(Q, B, ,u), then there is an orthogonal random set

function {Z(B), B E BI with covariance kernel ,A such that
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(3.23) X(t) = f f(t) dZ, t E T,
Q

and every random variable U in L2[X(t), t E T] may be represented

(3.24) U= f gdZ
Q

for some unique function g in L2(Q, B, ,.).
PROOF. Let X, be the congruence from L2[f(t), t E T] onto L2[X(t), t 6 T]

satisfying (3.16). If {f(t), t 6 T} spans L2(Q, B, ,u), define, for B E B, Z(B) =
41t(IB). It is immediate that {Z(B), B E B} is an orthogonal random set function
with covariance kernel ut. By the definition of the stochastic integral, (3.23) is
merely another way of writing the fact that X(t) = 4[f(t)].

In our opinion from the foregoing theorems one may draw the following
moral. The notion of the representation of a time series as an integral with
respect to an orthogonal random set function is a special case of the notion of
representation given by definition 3H. One may choose representations of a
time series in a multitude of ways. Indeed, if (Q, B, ,A) is a measure space such
that L2[X(t), t 6 T] and L2(Q, B, 1A) have the same dimension, there are many
families {f(t), t E T} of functions in L2(Q, B, Iu) which are a representation for
{X(t), t 6 T}. What one desires is a family {f(t), t 6 T} of familiar functions,
such as the family of complex exponentials {eit, -oo < t < X }, which are a rep-
resentation in a suitable space L2(Q, B, ,u) for a stationary time series.
The representation of a time series with covariance kernel K by the functions

{K(., t), t E T} in the reproducing kernel Hilbert space H(K) is in terms of a
well-behaved family of functions. Further, it is in a sense a natural representa-
tion. In the sequel, we shall show that it is also the natural representation in
terms of which to solve problems of statistical inference on time series.

4. Examples of reproducing kernel Hilbert space representations

To illustrate the notion of the representation of a time series by a reproduc-
ing kernel Hilbert space, let us here consider the case of a time series {X(t),
a < t _ b} defined on a finite interval T = {a < t < b} with continuous co-
variance kernel K(s, t) = E[X(s)X(t)].
A representation for K of the form of (3.7) is provided by Mercer's theorem,

which may be stated as follows. If one defines {spn(t), n = 1, 2, * } to be the se-
quence of normalized eigenfunctions and {X,t, n = 1, 2, * * } to be the sequence of
corresponding nonnegative eigenvalues satisfying the relation

(4.1) b K(s, t)<pn(s) ds = XnsP.(t), a < t _ b,

(4.2) Jb qm(t)'Pn(t) dt = b(m, n),
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where b(m, it) is the Kronecker delta function equal to I or 0 dependiin9 on whether
m = n or m $, n, then the kernel K(s, t) may be written

(4.3) K(s, t) = E XnSP.(S).(/)
n=1

where the series converges absolutely and uniformly for a _ s, t _ b.
For ease of exposition we assume that the eigenfunctions span the space of

square integrable functions on the interval a _ t _ b.
It may be shown that the reproducing kernel Hilbert space H(K) correspond-

ing to the covariance kernel K consists of all s(luare integrable functions h(t)
on the interval a _ t _ b such that

(4.4) 7 -| h(t) p (t) dt < x.n=l An a

The reproducing kernel inner product between two such functioiis is given by
x I rb by

(4.5) (h, g)K = = f h(t)sp.(t) dt f g(t)so.(t) dt.

The random variable (h, X)K in L2[X(t), a _ t _ b] corresponding to h(.) in
H(K) under the mapping described in theorem 3D is given by (4.5) with g
replaced by X.
We next consider the reproducing kernel Hilbert space corresponding to the

covariance kernel of an autoregressive scheme X(t) observed over a finite interval
a _ t < b.
A continuous parameter stationary time series X(t) is said to be an autoregres-

sive scheme of order m if its covariance function R(u) = E[X(t)X(t + u)] may
be written (see Doob [3], p. 542)

(4.6) R(s - t) = m dw
27r-X , a1,, (izo) r-k

k=O

where the polynomial _'.o akZ"'k has no zeros in the right half of the complex
z-plane. It may be shown that given observations of such a time series over a
finite interval a _ t < b, the corresponding reproducing kernel Hilbert space
contains all functions h(t) on a _ t _ b which are continuously differentiable
of order m. The reproducing kernel inner product is given by

(4.7) (h, g)K = f (Lth)(Ltg) dt + E dj,kh(-1)(a)g(k-1) (a)ja j,k=O

where
m

(4.8) Lih= E akh(m-k)(t)
k=O

(4.9) {d3,~}' = {at22+k-2 R( u }
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The first and second autoregressive schemes are of particular importance.
A stationary time series X(t) is said to satisfy a first order autoregressive

scheme if it is the solution of a first order linear differential equation whose
input is white noise q1'(t), the symbolic derivative of a process 7(t) with inde-
pendent stationary increments

(4.10) dX + OX = (t), > 0.

It should be remarked that from a mathematical point of view (4.10) should be
written
(4.11) dX(t) + ,3X(t) dt = dq(t).
Even then, by saying that X(t) satisfies (4.10) or (4.11) we mean that

(4.12) x (t) = H(t - s) di,(s)

where H(t - s) = exp [-,B(t - s)] is the one-sided Green's function of the
differential operator Ltf = f'(t) + ,Bf(t).
The covariance function of the stationary time series X(t) is

(4.13) R(t - u) = I e-lu-tl.

The corresponding reproducing kernel Hilbert space H(K) contains all differ-
entiable functions. The inner product is given by

(4.14) (h, g) = fb (f'+ Of ) (g' + ,3g) dt + 2,3f(a)g(a).
More generally, corresponding to the covariance function

(4.15) K(s, t) = Ce-18-t1
the reproducing kernel inner product is

(4.16) (h, g)s = i {f (h' + gh)(g' + 0g) dt + 20h(a)g(a)}

=2(C fb (h'g' + f32hg) dt + 2{h(a)g(a) + h(b)g(b)}.

The random variable (h, X)K in L2[X(t), a _ t _ b] corresponding to h(-) in
H(K) may be written

(4.17) (h, X)K = 2,.C {(2 h(t)X(t) dt + h(t) dX(t)}

+ f{h(a)X(a) + h(b)X(b)}.

Note that X'(t) does not exist in any rigorous sense. Consequently we write
dX(t) wbere X'(t) dt seems to be called for, It can be shown that (4.17) makes
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sense. In the case that h(-) is twice differentiable, one may integrate by parts
and write

(4.18) fb h'(t) dX(t) = h'(b)X(b) - h'(a)X(a) - fa X(t)h"(t) dt.

A stationary time series X(t) is said to satisfy a second order autoregressive
scheme if it is the solution of a second order linear differential equation whose
input is white noise 71'(t)

(4.19) d2X + 2 dX + y2X = q/(t), a > 0.

If Wc = - &a2 > 0, the covariance function of the time series is
lu-tl~ ~ ~ u-I}(4.20) R(t- = e4 y2 Cos (U - t) +

a

sin clu - t

The corresponding reproducing kernel Hilbert space contains all twice differ-
entiable functions on the interval a < t < b with inner product

(4.21) (h, g)K = | (h" + 2ah' + y2h)(g" + 2ag' + y2g) dt

+ 4a9y1h(a)g(a) + 4ah'(a)g'(a).
To write an expression for (h, X)K, one uses the same considerations as in (4.17).

5. The probability density functional of a normal time series

Given a normal time series {X(t), t E T} with known covariance function

(5.1) K(s, t) = Cov [X(s), X(t)]
and mean value function m(t) = E[X(t)], let Pm be the probability measure
induced on the space of sample functions of the time series. Next, let ml and m2
be two functions, and let PI and P2 be the probability measures induced by nor-
mal time series with the same covariance kernel K, and mean value functions
equal to mi and m2 respectively. By the Lebesgue decomposition theorem it
follows that there is a set N of Pi-measure 0 and a nonnegative Pi-integrable
function, denoted by dP2/dP,, such that for every measurable set B of sample
functions

(5.2) P2(B) = (d-p2) dPi + P2(BN).
B

If P2(N) = 0, theil P2 is absolutely continuous with respect to Pi, and dP2/dPl
is called the probability density function of P2 with respect to Pi. Two measures
which are absolutely continuous with respect to one another are called equivalent.
Two measures P1 and P2 are said to be orthogonal if there is a set N such that
P1(N) = 0 and P2(N) = 1.

It has been proved, independently by various authors under various hypoth-
eses, (see, [4], [5], [7], [9], [12], [13] and unpublished notes by L. Le Cam and
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C. Stein) that two normal probability measures are either equivalent or orthog-
onal. From the point of view of obtaining an explicit formula for the probability
density function, the following formulation of this theorem is useful (see also
Striebel [15]).
THEOREM 5A. Let Pm be the probability measure induced on the space of sample

functions of a time series {X(t), t C T} with covariance kernel K and mean value
function m. Let PO be the probability measure corresponding to the normal process
with covariance kernel K and mean value function m(t) = 0. If assumptions 5A
hold, then Pm and PO are either equivalent or orthogonal, depending on whether m
does or does not belong to the reproducing kernel Hilbert space H(K). If m C H(K),
then the probability density functional of Pm with respect to Po is given by

(5.3) f(X, m) = dP0 = exp (X, M)K- m )KI}
In order to develop a theory which applies simultaneously to discrete and

continuous parameter (possibly multiple) time series throughout the paper the
following assumptions are made.
Assumptions 5A. The index set T of the family of random variables {X(t),

t E T} under consideration is of the form for suitable sets D and S

(5.4) T = {(j, t):j C D and tC s} = D® S.
We assume that D is finite. In regard to S, there are two possible assumptions,
either that S is a countable set or that S is a separable metric space. In the latter
case we assume that the covariance kernel

(5.5) K(s, t) = Cov [X(s), X(t)]
has the following properties for each pair i, j in D and t in S: K[(i, s), (j, t)] is
continuous as a function of s in S, and K[(i, s), (j, s)] is continuous as a function
of s in S bounded in some neighborhood of t.
Forn= 1,2, *--let

(5.6) S. = {tJt2, * ,

be a sequence of monotone increasing finite subsets of S such that the union
S,,, = Un-= S. is either equal to S or dense in S, depending on whether S is
countable or a separable metric space.
Next let

(5.7) T = D S,, Too= D0 S,.
For each integer n, let B. be the smallest sigma-field containing, for any t in
T'n and real number a, the set [X(t) < a]. The sequence of sigma-fields Bn is
monotone nondecreasing. Let B,,, be the smallest sigma-field containing each B_.
It is assumed that for every t in T, X(t) is measurable with respect to B.. In the
continuous parameter case, a sufficient condition for this to hold is that the
stochastic process {X(t), t C T} is separable in the sense defined by Doob ([3],
chapter 2).
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PROOF. Let P(n [Pf)] be the restriction of Pm[Po] to B,. Let K. be the restric-
tion of the covariance kernel K to T. ® T.. Denote by (h, g)n the inner product
between two functions h and g in the reproducing kernel Hilbert space H(Kn).
Theorem 5A is a consequence of the following lemmas, whose proofs we omit in
order not to overload the present paper (for details, see Parzen [12]).
LEMMA 5a. If for some integer n, the restriction of m to T. does not belong to

H(Kn) then there is a random variable U in L2[X(t), t E Tj] such that P'n'[U = 0]
= 1 p(n)[U = 0] = 0. Consequently Po and Pm are orthogonal.
LEMMA 5b. If, for every integer n, the restriction of m to Tn belongs to H(Kn),

then P(') is absolutely continuous with respect to p(n) with probability densityfunction

(5.8) dpn' = exp {(X, m)n- (i,*M)n}

Further, for any a > 0,

(5.9) A,n(a) = Epe [(dpn) ) ] = exp {a( 2 1) (m),
LEMMA 5c. If, for every integer n, the restriction of m to Tn belongs to H(Kn),

then

(5.10) lim (m, m)n = 00 if m 2 H(K)
n--

(5.11) lim (m, m)n = (m, m)K < oo if m E H(K).
n--+-

LEMMA 5d. If m belongs to H(K), then limn,-A,n(2) <0. By martingale
theory, it follows that Pm is absolutely continuous with respect to PO, with probabil-
ity density function

(5.12) =dP i dP~(ni)K
(5.12) dPo-=dP dpl ) = exp (X, M)K (m, m)KJ
where the limit exists with probability one. Further, PO and Pm are equivalent.
LEMMA 5e. If m does not belong to H(K), then limn,-An(1/2) = oo. Conse-

quently, PO and Pm are orthogonal (by a theorem of Kraft [9]).
Theorem 5A has the following important consequence. Let {X(t), t E T} be a

normal time series with known proper covariance function K and unknown
mean value function m(t) = E[X(t)] belonging to a known class M of functions.
We have defined L2[X(t), t E T] to be the Hilbert space consisting of all ran-
dom variables U which may be represented either as a finite linear combination

n
(5.13) U = E ciX(ti)

i=l-

for some integer n, points ti, * , tn in T, and real numbers ci, * , c, or as a
limit in quadratic mean of such finite linear combinations under the inner
product (U, V) defined by

(5.14) (U, V) = E[UV] = Cov [U, V] + Em[U]Em[V].
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The subscript m on an expectation operator E is written to indicate that the
expectation is computed under the assumption that m(*) is the true mean value
function.
The fact that the inner product in (5.14) depends on the true value of m(-)

has the following consequence: the random variables belonging to the Hilbert
space L2[X(t), t E T] may not be the same for all values of m(.). This difficulty
does not arise if T is a finite set, for then L2[X(t), t E T] consists of all random
variables U of the form
(5.15) U = E2 c,X(t)

tET

for some real constants ct. However if T is infinite, it has to be assumed that
the space of random variables constituting L2[X(t), t E T] is the same for all
values of m(.) in the spaceM of admissible mean value functions. If it is assumed
that M is a subset of H(K), and that assumption 5A holds, it then follows from
theorem 5A that the Hilbert space L2[X(t), t E T], regarded as a space of ran-
dom variables, is the same for all m in M. Further, one can define a one-one
correspondence between L2[X(t), t E T] and H(K) so that if (X, g)K denotes
the random variable corresponding to g in K, then for every t in T and h, g
in H(K)

(5.16) [X, K(., t)]K = X(t),
(5.17) Em[(X, g)K] = (m, g)K for all m in M,

(5.18) Cov [(X, g)K, (X, h)K] = (g, h)K.

6. Regression analysis of normal time series

Using the concrete formula for the probability density functional of a normal
process provided by (5.3) there is no difficulty in applying the concepts of clas-
sical statistical methodology to problems of inference on normal time series. In
particular, let us consider the problem of regression analysis.

Let {X(t), t E T} be a normal time series with known proper covariance
kernel K(s, t) = Cov [X(s), X(t)] and whose mean value function is only as-
sumed to belong to a known class M. If it is assumed that M is a subset of the
reproducing kernel space H(K), then the probability measures Pm are all
equivalent.
The maximum likelihood estimate m*(.) is defined as that estimate in the

space M of admissible mean value functions such that

(6.1) f(X, m*) = max f(X, m).
meM

We assume that M is a closed subspace of H(K). Now under assumptions 5A,
H(K) is a separable Hilbert space. Consequently, let {wj, j E Q} be a finite or
countably infinite set of functions in H(K) which are orthonormal and which
span M; in symbols,
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(6.2) (Wi, Wj)K = 5(i, j),
and every function m(.) in M may be written
(6.3) m = E 3,BW j, f3 = (m, Wj)K.
Consequently we may write

(6.4) logf(X, m) = LI Oj(X, w,)K E 2

jEQ 2j(=-ieQ
Differentiating with respect to f3j, we find that the values {J#, j E Q} minimizing
(6.4) as a function of 10j, j E Q} are

(6.5) # = (X, Wj)K, i c Q.
Consequently, the maximum likelihood estimates of m(.) is given by

(6.6) m*(.) = E (X, Wj)KWj(*).
iEQ

This argument is easily justified if Q is a finite set, as it often will be. If Q is an
infinite set, the situation is more complicated. The random variable m*(t),
defined for each t in T by
(6.7) m*(t) = L (X, Wj)Kwj(t)

jeQ
is well defined because
(6.8) E[lm*(t)l2] = ww'(t) < .

jeQ
However, regarded as a function in H(K), m*(.) has, for almost all sample func-
tions X( ), infinite norm since (using theorem B, p. 251, of Loeve [11])
(6.9) PoKIm*(*)I|I = E J(X,W)K = = 1.

.,eQ
Thus m*(.) does not belong to H(K) and a maximum likelihood estimate can
not be said to exist.

Nevertheless the estimate defined by (6.7) is still a desirable estimate, since
it may be interpreted as the uniformly minimum variance unbiased estimate of
the value m(t) at a particular time t of the mean value function m(.). We omit the
proof of this fact which is shown in [12]. In the next section we treat the sim-
pler problem of showing that m*(t) is the uniformly minimum variance unbiased
linear estimate of m(t), and give other formulas for m*(t) and Var [m*(t)].

7. Minimum variance linear unbiased estimation of the mean
value function

Let {X(t), t C T} be a time series whose proper covariance kernel
(7.1) K(s, t) = Cov [X(s), X(t)]
is known. The mean value function
(7.2) m(t) = E[X(t)]
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is only assumed to belong to a known class M. One case of particular importance
is when M consists of all finite linear combinations of q known functions
WI(t), * w,,(t), so that the mean value function is of the form

(7.3) m(t) = 03wi(t) + + t3qw,(t)
for unknowns 1, . 3,B to be estimated.

In this section we consider the problem of estimating various functionals A(m)
of the true mean value function m(.) by estimates which (i) are linear in the
observations {X(t), t C T} in the sense that they belong to L2[X(t), t E T],
(ii) are unbiased, in a sense to be defined, and (iii) have minimum variance among
all linear unbiased estimates.
We assume that M is a subset of H(K). Further, we assume that between

L2[X(t), t C T] and H(K) there exists a one-one linear mapping with the fol-
lowing properties: if (h, X)K denotes the random variable in L2[X(t), t C T]
which corresponds under the mapping to the function in H(K), then for every t
in T, and h and g in H(K),
(7.4) [K(-, t), X]K = X(t),
(7.5) E,m[(h, X)K] = (h, m)K for all m in M,
(7.6) Cov [(h, X)K, (g, X)K] = (h, g)K.
The subscript mn on an expectation operator is written to indicate that the
expectation is computed under the assumption that m(.) is the true mean value
function.
A functional #,(m) is said to be linearly estimable if it possesses an unbiased

linear estimate (g, X)K. Since
(7.7) E4[(g, X)K] = (g, m)K = 4A(m) for all m in M
it follows that #6(m) is linearly estimable if and only if there exists a function g
in H(K) satisfying (7.7). Now the variance of a linear estimate is given by
(7.8) Var [(g, X)K] = (g, g)K.
Consequently finding the minimum variance unbiased linear estimate 4*=
(g*, X)K of A(m) is equivalent to finding that function g* in H(K) which has
minimum norm among all functions g satisfying the restraint (7.7). The solu-
tion to this problem is given by the projection theorem in Hilbert space.
PROJECTION THEOREM. Let H be an abstract Hilbert space, let M be a Hilbert

subspace of H, let v be a vector in H, and let v* be a vector in M. A necessary and
sufficient condition that v* be the unique vector in M satisfying
(7.9) l1v* - vli = min lu - vl|

u in M
is that

(7.10) (v*, u) = (v, u) for every u in M.
The vector v* satisfying (7.10) is called the projection of v onto M, and is also

written E*[vlM]. The vector E*[vlM] may also be characterized as the vector v*
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in H satisfying (7.10) which has minimum norm 1 v*0I among all vectors v*
satisfying (7.10).
THEOREM 7A. The uniformly minimum variance unbiased linear estimate A1* of

a linearly estimable function A(m) is given by

(7.11) = [E*(gJMf), X]K
with variance
(7.12) Var (4,*) = | E*(gJM) KX
where g is any function satisfying (7.7), M is the smallest Hilbert subspace of H(K)
containing M, and E*(glM) denotes the projection onto Ti of g.

In particular the uniformly minimum variance unbiased linear estimate m*(t)
of the value m(t) at a particular point t of the mean value function m(-) is
given by

(7.13) m*(t) = {E*[K(., t)|M], X}K
since

(7.14) m(t) = [K(., t), m]K.

It may be verified that (7.13) and (6.7) coincide.
We next consider the special case that M consists of all functions of the form

of (7.3). Given an estimable linear function #,(0) of the parameters Al, * ,

(7.15) #Q3) = 101 + ... + #'q0q
where the constants ,6#, * , { are known, the minimum variance unbiased
linear estimate of 0(.) is

(7.16) 4*= 1*1 + + 4'l3
where j3 *, *, , are any solution of the set of normal equations

((Wl) Wl)K ... (WI, Wq)j 1] (WI, X)K

(Wq, WI)K *.. (Wq, Wq)K Lw(Wq X)K

If the functions wi, *.. , wq are linearly independent as functions in H(K),
then one may write explicitly

(Wl, WOK. .. (WI, Wq)K (X) WOK

(7.18) m*(t) = -W

(Wq, Wl)K ... (Wq, Wq)K (X, Wq)K
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(WI, W1)R ... (W1, Wq)K W1(t)

(7.19) Var [m*(t)] =

(W., Wl)K ... (W., Wq)RK W.Wt
w1(t) ... Wq(t) 0

where
(WI, Wl)K ... (WI, W,)K

(7.20) W=

(Wq, WI)K * (Wq, W,)K

8. Hypothesis testing and simultaneous confidence bands for mean
value functions

If the time series X(t) is assumed to be normal, or if all linear functionals
(h, X)K may be assumed to be approximately normally distributed, then one
may state a confidence band for the entire mean value function m(.) as follows.
Given a confidence level a, let Cq(a) denote the a percentile of the x22 distribu-
tion with q degrees of freedom, that is,

(8.1) P[x' 2 Cq(a)] = a.

In particular, for q = 2 and a = 0.95, CQ(a) is approximately 6.
We now show that if the space M of possible mean value functions has finite

dimension q, then

(8.2) m*(t) - [Cs(a)1l12u[m*(t)] _ m(t) _ m*(t) + [Cq(a)]1/20i[m*(t)],
for all t in -oo < t < , is a simultaneous confidence band for all values of the
mean value function with a level of significance not less than a, that is, if m(.)
is the true mean value function then (8.2) holds with a probability greater than
or equal to a.
To prove (8.2) we prove a more general theorem.
THEOREM 8A. Simultaneous confidence interval of significance level a for all

estimable functions (m, g): for all m in M

(8.3) P. ( sup JVXE K{[X E*( )K 1s< CQ)s = a.

PROOF. Let w1, * *, wq be linearly independent functions which span M.
Then we may write m = ,3lwi + * + f$qWq where , 1, * are functions of
m. Further,

(8 4) (m, 9)K= a8l + + aSqBg
[X, E*(g9|)]K = a0ll + * + aq,a)
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where aj = (wj, g)K for j = 1, *** ,q, and *I3, * , are the solution of the
normal equations

q

(8.5) E, WjkOk = (X, Wj)K, j = 1, q,q
k=1

in which Wjk = (W,, Wk)K. Next the random variable appearing in (8.3) is equal
to, letting {Wik} denote the inverse matrix of {Wjk},

q 2

E aj(/I - j3) q
(8.6) sup 1 = E (E} - 13j)Wjk(l#*k k)

-Z<et,* *,a <Z ajW'kak j,=1

j,k=l

which is distributed as x2 (which is immediate if one takes Wjk = 6(j, k); com-
pare Scheffe [14], p. 416).
From the foregoing proof we obtain immediately the useful fact that for

every m in M

(8.7) Pm[IIm*(t) - m(t)IR _C<(=a)] = a'.
To prove (8.7) one need only note that the random variable in (8.7) is equal to
the right side of (8.6), and consequently, is distributed as x20. Using (8.7) one
may construct a test of the hypothesis that the mean value function m(t) is
identically 0 against the alternative that it belongs to the q-dimensional sub-
space M.
More generally, given a q-dimensional subspace M of H(K), and a q'-dimen-

sional subspace M' of M, to test the composite null hypothesis

(8.8) Ho:m(.) E M'

against the composite alternative hypothesis

(8.9) Hl:m(.) E M

one may use the statistic

(8.10) vA = IJmM(t) - mM (t)112
where mM(t)[mt'(t)] denotes the minimum variance unbiased linear estimate
of m(t) under the hypothesis H1[Ho]. It may be shown that, under Ho, A is
distributed as x2 with q - q' degrees of freedom.

9. Iterative evaluation of reproducing kernel inner products

In this section we give an iterative method of evaluating the reproducing
kernel inner product (h, h)K and corresponding random variable (h, X)K for
time series {X(t), a < t _ b}. The method given makes possible the approximate
synthesis of minimum variance unbiased linear estimates, assuming a known
covariance kernel K which can be of any form and can be known either ana-
lytically or numerically. The method to be described is a gradient method and
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can be extensively generalized. It is described here in order to establish the
feasibility of iterative methods.

Let K(s, t) be a covariance kernel, defined for a _ s, t < b. Let H(K) be the
corresponding reproducing kernel Hilbert space. Let C(a, b) be the space of con-
tinuous functions on the interval a to b.

Given a function h in H(K), it is of interest to develop methods of generating
sequences {H,)} of functions in C(a, b) having the properties that

(9.1) lim E[ |(X, h)K- fb H (t)X(t) dtl ] = 0

(9.2) (h, h)K = lim f
I

Hn(s)K(s, t)Hn(t) ds dt.

It is easily shown that sequences {H,} satisfying (9.1) and (9.2) exist. As in
section 4, let X,, be the eigenvalues, arranged in decreasing order, XI ._ X2 > * ,
and let (pn(-) be the corresponding eigenfunctions of the kernel K(s, t). Then a
function h belongs to H(K) if and only if

n1 fb
(9.3) (h, h)K = E Ai h(t)/pn(t) dt <

Consequently, define
n 1 b

(9.4) Hn(t) = E 'Pk(S)-J h(s)>i,(s) ds.
k=1 Xka

Clearly Hn(.) belongs to C(a, b).
It may be verified that

(9.5) f f Hn(s)K(s, t)Hn(t) ds dt = E - f h(t)'Pk(t) dt
aa ~~~~~~k=1Xka

and

(9.6) f Hn(t)X(t) dt = E , f h(s)Pk(s) ds f X(t)sok(t) dt.

Therefore the sequence defined by (9.4) satisfies (9.1) and (9.2). However, it is
not computationally convenient to use (9.4), inasmuch as it involves the calcu-
lation of eigenvalues and eigenfunctions.

Define a transformation T on functions H in C(a, b) as follows:

(9.7) TH(t) = f H(s)K(s, t) ds, a _ t < b.

We may then write

(9.8) f| H(t)X(t) dt = (TH, X)K

(9.9) fbJ H(s)K(s, t)H(t) ds dt = (TH, TH)K.

Next, define a sequence of functions H. as follows. Let a be a constant to be
specified. Let Ho(t) = 1, or some other function in C(a, b). For n 2 1, let

(9.10) H,+, = H. - c(THn- h).
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We claim that if a is chosen in an interval specified by (9.18) or (9.21), then the
sequence H. defined by (9.10) satisfies (9.1) and (9.2). To prove this assertion
it suffices to prove that

(9.11) E[I(hi X)-K (THn,X)K1] =1|(h - TH.)112O0 as n oo.

From (9.10) we may write
(9.12) THn+l -h = (TH. - h) - aT(THn- h)

= (I - aT)(TH,, - h)
where I is the identity operator, Ih(t) = h(t). From (9.12) it follows that
for n > 0

(9.13) TH. - h = (I - aT)n(THo - h).
We next note that for any function g in H(K),

fb

(9.14) g(t) = E Son(t) Jp(s)g(s) dt,
n-I

(9.15) Tg(t) = E 'Pn(t)X,n J n(s)g(s) ds,
n-1

(9.16) I1(I -aT)gl2 - E 1 {f (s)g(s) ds} {1 -aX,n}2.
n1=1 Xn,~J

From (9.13) and (9.16) it follows that, defining g = THo- h and Y. =
fb So,,(s)g(S) ds,

1(9.17) 11TH. - hIIK = E ; 7Ym {1--aXm}2.

Let a be chosen so that, for every integer m,
2

(9.18) -1 < 1-aXm< 1 or 0 < a <
m

If (9.18) holds, then for any integer M

(9.19) IITH,- hijK ±= 211 aXm}2 + -12
-Im=l - m>M im

which tends to 0 as one first lets n tend to xo, and then lets M tend to x (note
that the last term in (9.19) is the remainder term of a convergent series). We
have thus showed that if (9.18) is satisfied then (9.11) holds. Further the
procedure converges monotonically, in the sense that
(9.20) jITH,+1 - hlKI9 11THn- hjIK.

If M is a constant such that maxm Xm < M, then (9.18) is satisfied if one
chooses a so that
(9.21) 0 < a _ 2/M.
A convenient choice for M is
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X b

(9.22) M = f= K(t, t) dt.

It should be remarked that (9.19) implies that

(9.23) irn J (THn- h)(t)I2dt = 0

since for any g in H(K)
RF(t)R211C112

(9.24) | |9(t)|2 _ |1911~K KK(t, t) dt.
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