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1. Introduction

Let (W, 1, P) be a probability space with points w EC W and let (y., an),
n = 1, 2, * * *, be an integrable stochastic sequence: yn is a sequence of random
variables, 9. is a sequence of a-algebras with a. C ±n+1 C 5, yn is measurable
with respect to 5, and E(y.) exists, -Xc_ E(yn) .< m. A random variable
s = s(w) with positive integer values is a sampling variable if {s < n} CE 5f and
{s < } = W. (We denote by I-... } the set of all w satisfying the relation in
braces, and understand equalities and inequalities to hold up to sets of P-meas-
ure 0.) We shall be concerned with the problem of finding, if it exists, a sampling
variable s which maximizes E(yN).
To define a sampling variable s amounts to specifying a sequence of sets

B. C 5n such that

(1) ° = Bo C ... C Bn C Bn+1 C ..;U Bn = W,
the sampling variable s being defined by

(2) {s < n} = B., {s =n} = Bn-B.-,
We shall be particularly interested in the case in which the sequence (y., 5n)

is such that the sequence of sets

(3) Bn = {E(Yn+±1|Yn) _ Y.}
satisfies (1). We shall call this the monotone case. In this case a sampling vari-
able s is defined by
(4) {s < n} = {E(Y.+|1Fn) <_ Yn
and s satisfies

5) E(yn+l|5n) >< Yn s > n.
=< Yn, ~~~~~s. n.

The relations (5) will be fundamental in what follows.
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In the monotone case we have for the sampling variable s defined by (4) the
following characterization:

(6) s = least positive integer j such that E(yj+iIgj) _ yj.

Now even in the nonmonotone case we can always define a random variable s
by (6), setting s = X if there is no such j; let us call it the conservative random
variable. The following statement is evident: the necessary and sufficient con-
dition that there exists a sampling variable s satisfying (5) is that we are in the
monotone case, and in this case s is the conservative random variable.

In section 3 we are going to show that in the monotone case, under certain
regularity assumptions, the conservative sampling variable s maximizes E(y,).

2. An example

Before proceedinig with the general theory we shall give a simple and instruc-
tive example of the monotone case in the form of a sequential decision problem.

Let x, xI, x2, *-- be a sequence of independent and identically distrib-
uted random variables with E(x+) < o, where we denote a+ = max (a, 0),
a- = max (-a, 0). We observe the sequence x1, x2, - * * sequentially and can stop
with any n _ 1. If we stop with xn we receive the reward mn = max (xi, . . . ,
but the cost of taking the observations x1, . .. , x,, is some strictly increasing
function g(n) 2 0, so that our net gain in stopping with x. is yn = mi - g(n).
The decision whether to stop with xn or to take the next observation xn+1 must
be a function of x1, * - *, x. alone. Problem: what stopping rule maximizes the
expected value E(y,,), where s is the random sample size defined by the stopping
rule? We assume that the distribution function F(u) = P{x _ u} is known.
That E(y.) exists follows from the inequality

(7) Yn + + xn+X
which implies that E(yn+) < oo.

Let 5n be the a-algebra generated by xi, xn. Then (yn, .i,) is an integrable
stochastic sequence, and we have

(8) E(yi+i15n) -y = f [m+1 - m.] dF(xn+i) - [g(n + 1) - g(n)1

= J (x -mn)+dF(x) -f(n),

where we have set

(9) f(n) = g(n + 1) -g(n) = cost of taking the (n + 1)st observation.

Since we have assumed g(n) to be strictly increasing, and f(n) > 0, it is easily
seen that there exist unique constants a,n such that

(10) f (x - an)+ dF(x) = f(n), n _ 1.
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By (8) and (10),
(> Yn if mn< a,,,

L.yUn if mn _ an.

The. conservative random variable s defined by (6) is therefore

(12) s = least positive integer j such that mj _ aj.
We are in the monotone case if and only if this s is a sampling variable and for
every n

(13) {E(yn+±IjTn) _ y.} C {E(Y.+2j'n+1) - Yn+l±}
that is, m. k an implies mn+l _ an+1, which will certainly be the case, since
Mn mMn+l, if an > an+l, that is, if f(n) is nondecreasing and hence an is non-
increasing. We shall henceforth assume this to hold. We shall now show that in
this case the conservative random variable s is in fact a sampling variable, that
is, that P{s < oo} = 1. We have

(14) {s > n} = {Mn < a,,}

and hence

(15) P{s <o} = 1- limP{s> n} = 1- limP{mMn < an}
n n

1- limP{mPn < ai} = 1- limPn{x <al} = 1,
n n

since by hypothesis f(1) > 0 so that by (10), P{x < al} < 1. In fact, for any
r _ O,
rx>0

(16) E(sr) = , nrP{s = n}f < ,nrP{s > n-1}
n=l n=1

_ 1 + E nrP{mn-1 < a}
n=2

= 1 + E nrPn l{x < al} < oc,
n=2

so that s has finite moments of all orders.
It is of interest to consider the special case g(n) = cn, 0 < c < oo. Here

f(n) = c and an = a, where a is defined by

(17) f (x - a)+ dF(x) = c,

and s is the first j >_ 1 for which xj _ a. Hence
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P{s = j} = P{x > a}Pi'-'x < a},

E(s) = P{ . }

(18) E(y.) = , P{s = j}E(m1 - cils = j),
j=1

E(mjls = j) = E(xjlxi < a, **l, < a, Xj _ a)

_- 1
xxdF(x),=P{X > altXd

(X.cx

so that

(19) E(y.) = x{_ } [ f xdF(x) - c]
Iz _a)P_ 1 al-~

P{= >a} Li (x - a)+ dF(x)-c + aP{x _ alj = a,

an elegant relation.

3. General theorems
In the following three lemmas we assume that (y., 5,,) is any integrable

stochastic sequence and that s and t are any sampling variables such that E(yJ)
and E(yt) exist.
LEMMA 1. If for each n,

(20) E(y8j1F5) _ yn if s > n,
and
(21) E(yt1F5n) _ yn if s = n, t > n,
then

(22) E(y.) 3E(yt).
Conversely, if E(y,,) is finite and (22) holds for every t, then (20) and (21) hold

for every t.
PROOF.

(23) E(yS) = y| dP + I yn dP
n=1 f n=1 ft

= ] y8dP+ E ] yndP18 _n, t =<n) 1(=n, t >n)

yndP + Z | ytdP
n=1 fJ=

js2n,t=n) ja=n,t>n)

= E(y,).
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To prove the converse, for a fixed n let

(24) V = {s > n and E(y,s15) < yn};
then V & 5n. Define

(25) i &V.

Then t' is a sampling variable. Since E(y8) is finite, by (22) E(yn) < oo and then
E(yt') exists. But

(26) E(yt,) = f yt dP + fv Yt, dP = f y,dP + fvYn dP
Ite=81 It'=81

fy|sdP +f YdP=E(y).
It =81

But by (22), E(yt,) _ E(y.). Hence

(27) fvYndP = fY8dP
and therefore P(V) = 0, which proves (20). To prove (21) let

(28) V = {s = n, t > n, and E(yjI5n) > yn},
and define

rs, w2V,
(29) = , we V.

Lt, w V.
Then

(30) E(yt') = f Yt'dP + fyt, dP = f y,dP + v yt dP
=t'8)

> f y dP + yn dP fy|sdP + f y8dP E(ys),
(e=8) z8

and again P(V) = 0, which proves (21).
LEMMA 2. If for each n,

(31) E(Yn+±11I) Yn, s > n,

and if

(32) lim inf Yn+ dP =0,
Ih >nf

then for each n,

(33)rrEy15n >Yn_ >n
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PROOF. (compare [2], p. 310). Let V E 5f and U = V{s 2 n}.
Then
(34) fu yndP= f yndP+ f yn dP

V(s=n) V(B>n)

< f y. dP + f Yn+l dP
V(s=n) V{s>nJ

= f y8dP + f yn+idP
Vtn _a<=n+lI VIJ>n+lI

<...< f y,dP + f Yn+r dP
Vtn <=J<n+r) V18 >n+rI

_ f y8dP + Yn++ dP.
V(n _aJ_n+r) Is >n+r)

Therefore
(35) fYndP _ f ydP + lim inf y+ dP =fy.dP,

V(aJ n) (a >n)
which is equivalent to (33).
LEMMA 3. If for each n,

(36) E(yn+1153n) _ yn, S ln,
and if

(37) lim inf yn- dP = 0,
(t >nI

then

(38) E(yg15n) Yn, s = n, t > n.

PROOF. Let V E 5n and U = V{s = n,t_ n}. Then

(39) fu yndP fy,|dP + f yn dP
Vls=n, t=n) VIs=n, t >7n

_ f yn dP + f Yn+l dP
Vfs=n, t-n) Vla=n, t >n)

= f ytdP + f Yn+l dP
V(a-n, n StgSn+l J Vis -n, t >n+ 1)

> ... > J ytdP + f Yn+r dP
VIs=n, n -t .n+r) V(s-n, t >n+r)

f| yidP - Yn-+f dP.
Vfsn . <. n|rlft |r
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Therefore

(40) fUyndP f ytdP - lim inf y; dP =fytdP,
Vta=n,t >n) it >n)

which is equivalent to (38).
We can now state the main result of the present paper.
THEOREM 1. Let (, 5,,) be an integrable stochastic sequence in the monotone

case and let s be the conservative sampling variable
(41) s = least positive integer j such that E(yj+113j) _ yj.
Suppose that E(y8) exists and that

(42) lim inf yn+ dP = 0.
(s >n)

If t is any sampling variable such that E(yt) exists and

(43) liminf f YndP = 0,
{t >nj

then

(44) E(YJ) >: E(y,).
PROOF. From lemmas 1, 2, and 3 and relations (5).
We shall now establish a lemma (see [2], p. 303) which provides sufficient

conditions for (42) and (43).
LEMMA 4. Let (yn, sin) be a stochastic sequence such that E(y +) < oo for each

n > 1, and let s be any sampling variable. If there exists a nonnegative random
variable u such that

(45) E(su) <0,
and if

(46) E[(yn+i - Yn)+1Yn] < u, s > n,

then

(47) E(yS+) <0, lim [ YdP = 0.
n f

(s >n )

PROOF. Define

(48) Z1= Yj, Zn+l= (Yn+l -y.)+ for n > 1, wnn=Zl+ '-- +Zn-
Then

(49) Yn _ Wn
(and hence y,+ < ws if s _ n), and by (46)

(50)7vE(. 15nA <- U, s > nX
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Hence

(51) E(y+) _ E(w) = n f Wn dP = n f zjdP
8=1f n=l j=l f

(8=n) ~~~~(s=n)

z|j dP = I zj dP
j=1 n=j 18=n) j=1 >j-11

= E(y+) + j J E(zjlfj_l) dP
j f8jl

_< E(yl+) + udP = E(yl+) + f udP
j= fsj1 j=2 n=j ttn

18>j-1( 8=n

= E(y+) + f (n - 1)u dP = E(y+) + E(su) - E(u)

_ E(yj+) + E(su) < ,
and hence from (49)

(52) lim y+ dP < lim f w,dP = 0.
Is >n ) (8 >n I

REMARK. Lemma 4 remains valid if we replace a+ by a- or by lal throughout.

4. Application to the sequential decision problem of section 2

Recalling the problem of section 2, let x, xl, x2, * - * be independent and iden-
tically distributed random variables with E(x+) < oc, 5n the a-algebra generated
by x1, * * - , x., g(n) 2 0, f(n) = g(n + 1) - g(n) > 0 and nondecreasing, m. =
max (xi, * , xn), and yn = m- g(n). The constants a!n are defined by
(53) E[(x- an)+] = f(n)
and are nonincreasing; we are in the monotone case, and the conservative sam-
pling variable s is the first j > 1 such that mj > aj; thus

(54) {s > n} = {mn < a.1}.
We have shown in section 2 that

(55) P{s <oo} = 1, E(sr) <oo for r _0.

We wish to apply theorem 1. As concerns s it will suffice to show that
E(y+) <0 and that

(56) lim f y+ dP = 0,
8 >nJ

which we shall do by using lemma 4. Let

(57) Yn = m+ - g(n).
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Then

(58) Y.' = y+, E(Y) =E(yn) < E(x+ + + x+) = nE(x+) < oo,
and

(59) E[(yn+ - Yn)+Ign] = E{[mn++,- mn+ -f(n)]+15.1
< E[(m,+ i - m+)15.] _ E(xn++l5n)

- E(x+) < oo.

Hence by lemma 4, setting u = E(x+),
(60) E(y+) = E(Y+) <00
and

(61) lim f yn+ dP = lim f Y+ dP =0,
n I >n) n Is >n)

which were to be proved.
To establish the conditions on t of theorem 1 we assume that Ex- < w; then

since yn _ xi + g(n) it follows that E(y;) < oo. Define a random variable u
by setting
(62) u(w) = f(n) if t(w) = n.
Since

(63) (Yn+i - yn) _ f(n)
and f(n) is nondecreasing, it follows that

(64) E[(yn+l -Yn)-<5,n] _ u if t _ n.

We now assume that f(n) _ h(n), where h(n) is a polynomial of degree r _ 0,
and that E(tr+l) <0. Then

(65) E(tu) = E f nf(n) dP _ , nh(n)P{t = n}.
t=t=n) n=1

Since

(66) E(tr+l) = nfr+1p{t = n} <0o,
n=1

it follows that E(tu) < oo. Then by the remark following lemma 4,

(67) E(yi-) < X and lim y; dP = 0,
it >n)

and all the conditions of theorem 1 are established. Thus we have proved
THEOREM 2. Suppose that Elxl < X and that in addition to the conditions on

g(n) in the first paragraph of this section we have f(n) _ h(n), where h(n) is a
polynomial of degree r _ 0. If t is any sampling variable for which E(tr+h) < 00

then -X0 < E(yt) _ E(y.) < oo, where s is the conservative sampling variable de-
fined by (54).
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If g(n) = nc then f(n) = c and we can take r = 0. Hence
COROLLARY 1. If EIxl < oo and y. = mn-cn, 0 < c < oo, then if t is any

sampling variable for which E(t) < o, E(yt) _ E(y.) = a [see (19)], where a is
defined by E(x - a)+ = c and s = the first j > 1 such that xj _ a. Thus s is
optimal in the class of all sampling variables with finite expectations.
To replace the condition E(tr+l) < X in theorem 2 and corollary 1 by condi-

tions on yt we require the following theorem which is of interest in itself. We
omit the proof.
THEOREM 3. Let F(u) be a distributionfunction. Define G(u) = | F(u + n).

Then G(u) is a distribution function if and only if

(68) J0 udF(u) < oo,

and for any integer b _ 1,

(69) 10 u dG(u) <0o
if and only if

(70) fo0 ub+1 dF(u) < oo
COROLLARY 2. If yn = mn- cn, 0 < c < oo, and b is any integer > 11 then

(71) E(sup y+)b <00
n >

if and only if

(72) E(x+)b+l < 00.

PROOF. We can assume c = 1. Define

(73) G(u) = P{supyn+ < u}.
n_

Then for u _ 0,

(74) G(u) =P{x1 _ u+ 1, X2 < u+ 2, **xn< u+n,* }

= HlF(u+n).
n=1

By theorem 3,

(75) E(supy)b - f 0 ubdG(u) <00
n >=1 fo

if and only if

(76) f0 ub+1 dF(u) = E(x+)6+1 < 00.

THEOREM 4. Assume EIxI < oo, E(X+)2 <0. If yn = mn- g(n) where g(n)
is a polynomial of degree r _ 1 such that

(77) g(l) > 0,
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g(n + 1) - g(n) is positive and nondecreasing, then for any sampling variable t,

(78) E(yt) E(y),
where s is the conservative sampling variable defined by (54).

PROOF. By theorem 2, if E(tr) <0 then (78) holds. Hence we can assume
that E(tr) = oo. Now

9(1) > 0, f(1) = g(2) - g(1) > 0,
g(2) _ g(1) + f(1), g(3) - g(2) _ f(l),

(79) g(3) _ g(1) + 2f(1),

g(n) _ g(1) + (n -1)f(1).
Let

(80) a = 2min [g(1),f(1)] > 0.

Then by (79),
(81) g(n) > an for n > 1.

Let

(82) gn = Mn -
a

n.(82)~~~~~~~~~
By corollary 2, E(91+) <0. Then since

(83) Yt = Y' +
a

t-g9(t) -Y - g(t)

we have

(84) E(y,) _ E(y+) - E[g(t)] = -x,

so that (78) holds in this case too.

REMARK. If in the case g(n) = cn we define yn = Xn -cn, then

(85) Y. -< Yn, ys y-
Hence for any sampling variable t,

(86) E(yt) _ E(y,) _ E(y.) = E(y.),
so that s is also optimal for the stochastic sequence (n,, 5n).

5. A result of Snell

As an application of lemmas 1 and 2, we are going to obtain Snell's result on
sequential game theory [3].
LEMMA 5 (Snell). Let (y,., 5) be a stochastic sequence satisfying yn _ u for
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each n with Elul <0. Then there exists a semimartingale (xn, 5Fn) such that for
every sampling variable t and every n,

(87) E(xtlffnl > xn if t >_ n, xn _ E(U|n)
(88) xn = min [yn, E(x.+l§3:n)],
and
(89) lim inf xn = lim inf yn.
We will assume the validity of this lemma, and prove the following theorem

by applying lemmas 1 and 2.
THEOREM 5 (Snell). Let (yn., n) and (Xn, Jn) satisfy the conditions of lemma 5.

For e _ 0 define s = j to be the first j 2 1 such that x; 2 yj - e. If e > 0, then

(90) E(yJ) < E(y,) + e
for every sampling variable t. If e = 0 and if P{s < } = 1, then (90) still holds.

PROOF. It is obvious that in both cases s is a sampling variable. We need to
verify that P{s < o} = 1. If e > 0, by (89) this is true.

Since (Xn, ff.) is a semimartingale,
(91) E(xn+115n) >_ Xn.

By (88) and the definition of s,
(92) E(xn+115:n) = xn for s > n.
Since -xn _ E(-ujIFn) and Elul <0, by lemma 2 and (92), we have

(93) E(x4lg,,) _ x. for s > n.

By (87), (93), and lemma 1, we obtain E(x,) _ E(xt), and therefore, by defini-
tion of s,

(94) E(y,) < E(x,) + e < E(xt) + e _ E(yt) + e.
Thus the proof is complete.

J. MacQueen and R. G. Miller, Jr., in a recent paper [1], treat the problem
of section 2 by completely different methods. Reference should also be made to
a paper by C. Derman and J. Sacks [4], in which the formulation and results
are very similar-to those of the present paper.
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