A MARTINGALE SYSTEM THEOREM AND APPLICATIONS

Y. S. CHOW
IBM RESEARCH CENTER, YORKTOWN HEIGHTS
AND
HERBERT ROBBINS
COLUMBIA UNIVERSITY

1. Introduction

Let (W, \mathfrak{F}, P) be a probability space with points $\omega \in W$ and let $\left(y_{n}, \mathfrak{F}_{n}\right)$, $n=1,2, \cdots$, be an integrable stochastic sequence: y_{n} is a sequence of random variables, \mathcal{F}_{n} is a sequence of σ-algebras with $\mathfrak{F}_{n} \subset \mathfrak{F}_{n+1} \subset \mathfrak{F}, y_{n}$ is measurable with respect to \mathcal{F}_{n}, and $E\left(y_{n}\right)$ exists, $-\infty \leqq E\left(y_{n}\right) \leqq \infty$. A random variable $s=s(\omega)$ with positive integer values is a sampling variable if $\{s \leqq n\} \in \mathcal{F}_{n}$ and $\{s<\infty\}=W$. (We denote by $\{\cdots\}$ the set of all ω satisfying the relation in braces, and understand equalities and inequalities to hold up to sets of P-measure 0 .) We shall be concerned with the problem of finding, if it exists, a sampling variable s which maximizes $E\left(y_{s}\right)$.

To define a sampling variable s amounts to specifying a sequence of sets $B_{n} \in \mathfrak{F}_{n}$ such that

$$
\begin{equation*}
0=B_{0} \subset \cdots \subset B_{n} \subset B_{n+1} \subset \cdots ; \bigcup_{1}^{\infty} B_{n}=W \tag{1}
\end{equation*}
$$

the sampling variable s being defined by

$$
\begin{equation*}
\{s \leqq n\}=B_{n}, \quad\{s=n\}=B_{n}-B_{n-1} \tag{2}
\end{equation*}
$$

We shall be particularly interested in the case in which the sequence $\left(y_{n}, \mathcal{F}_{n}\right)$ is such that the sequence of sets

$$
\begin{equation*}
B_{n}=\left\{E\left(y_{n+1} \mid F_{n}\right) \leqq y_{n}\right\} \tag{3}
\end{equation*}
$$

satisfies (1). We shall call this the monotone case. In this case a sampling variable s is defined by

$$
\begin{equation*}
\{s \leqq n\}=\left\{E\left(y_{n+1} \mid \mathfrak{F}_{n}\right) \leqq y_{n}\right\} \tag{4}
\end{equation*}
$$

and s satisfies

$$
E\left(y_{n+1} \mid \mathfrak{F}_{n}\right) \begin{cases}>y_{n}, & s>n \tag{5}\\ \leqq y_{n}, & s \leqq n\end{cases}
$$

The relations (5) will be fundamental in what follows.
This research was sponsored in part by the Office of Naval Research under Contract No. Nonr-226 (59), Project No. 042-205.

In the monotone case we have for the sampling variable s defined by (4) the following characterization:

$$
\begin{equation*}
s=\text { least positive integer } j \text { such that } E\left(y_{j+1} \mid \mathfrak{F}_{j}\right) \leqq y_{j} \tag{6}
\end{equation*}
$$

Now even in the nonmonotone case we can always define a random variable s by (6), setting $s=\infty$ if there is no such j; let us call it the conservative random variable. The following statement is evident: the necessary and sufficient condition that there exists a sampling variable s satisfying (5) is that we are in the monotone case, and in this case s is the conservative random variable.

In section 3 we are going to show that in the monotone case, under certain regularity assumptions, the conservative sampling variable s maximizes $E\left(y_{s}\right)$.

2. An example

Before proceeding with the general theory we shall give a simple and instructive example of the monotone case in the form of a sequential decision problem.

Let x, x_{1}, x_{2}, \cdots be a sequence of independent and identically distributed random variables with $E\left(x^{+}\right)<\infty$, where we denote $a^{+}=\max (a, 0)$, $a^{-}=\max (-a, 0)$. We observe the sequence x_{1}, x_{2}, \cdots sequentially and can stop with any $n \geqq 1$. If we stop with x_{n} we receive the reward $m_{n}=\max \left(x_{1}, \cdots, x_{n}\right)$, but the cost of taking the observations x_{1}, \cdots, x_{n} is some strictly increasing function $g(n) \geqq 0$, so that our net gain in stopping with x_{n} is $y_{n}=m_{n}-g(n)$. The decision whether to stop with x_{n} or to take the next observation x_{n+1} must be a function of x_{1}, \cdots, x_{n} alone. Problem: what stopping rule maximizes the expected value $E\left(y_{s}\right)$, where s is the random sample size defined by the stopping rule? We assume that the distribution function $F(u)=P\{x \leqq u\}$ is known. That $E\left(y_{n}\right)$ exists follows from the inequality

$$
\begin{equation*}
y_{n}^{+} \leqq x_{1}^{+}+\cdots+x_{n}^{+} \tag{7}
\end{equation*}
$$

which implies that $E\left(y_{n}^{+}\right)<\infty$.
Let \mathfrak{F}_{n} be the $\boldsymbol{\sigma}$-algebra generated by x_{1}, \cdots, x_{n}. Then $\left(y_{n}, \mathfrak{F}_{n}\right)$ is an integrable stochastic sequence, and we have

$$
\begin{align*}
E\left(y_{n+1} \mid F_{n}\right)-y_{n} & =\int\left[m_{n+1}-m_{n}\right] d F\left(x_{n+1}\right)-[g(n+1)-g(n)] \tag{8}\\
& =\int\left(x-m_{n}\right)^{+} d F(x)-f(n),
\end{align*}
$$

where we have set

$$
\begin{equation*}
f(n)=g(n+1)-g(n)=\text { cost of taking the }(n+1) \text { st observation. } \tag{9}
\end{equation*}
$$

Since we have assumed $g(n)$ to be strictly increasing, and $f(n)>0$, it is easily seen that there exist unique constants α_{n} such that

$$
\begin{equation*}
\int\left(x-\alpha_{n}\right)^{+} d F(x)=f(n), \quad n \geqq 1 \tag{10}
\end{equation*}
$$

By (8) and (10),

$$
E^{\prime}\left(y_{n+1} \mid \mathfrak{F}_{n}\right)\left\{\begin{array}{lll}
>y_{n} & \text { if } & m_{n}<\alpha_{n}, \tag{11}\\
\leqq y_{n} & \text { if } & m_{n} \geqq \alpha_{n} .
\end{array}\right.
$$

The conservative random variable s defined by (6) is therefore

$$
\begin{equation*}
s=\text { least positive integer } j \text { such that } m_{j} \geqq \alpha_{j} . \tag{12}
\end{equation*}
$$

We are in the monotone case if and only if this s is a sampling variable and for every n

$$
\begin{equation*}
\left\{E\left(y_{n+1} \mid F_{n}\right) \leqq y_{n}\right\} \subset\left\{E\left(y_{n+2} \mid F_{n+1}\right) \leqq y_{n+1}\right\} \tag{13}
\end{equation*}
$$

that is, $m_{n} \geqq \alpha_{n}$ implies $m_{n+1} \geqq \alpha_{n+1}$, which will certainly be the case, since $m_{n} \leqq m_{n+1}$, if $\alpha_{n} \geqq \alpha_{n+1}$, that is, if $f(n)$ is nondecreasing and hence α_{n} is nonincreasing. We shall henceforth assume this to hold. We shall now show that in this case the conservative random variable s is in fact a sampling variable, that is, that $P\{s<\infty\}=1$. We have

$$
\begin{equation*}
\{s>n\}=\left\{m_{n}<\alpha_{n}\right\} \tag{14}
\end{equation*}
$$

and hence

$$
\begin{align*}
P\{s<\infty\} & =1-\lim _{n} P\{s>n\}=1-\lim _{n} P\left\{m_{n}<\alpha_{n}\right\} \tag{15}\\
& \geqq 1-\lim _{n} P\left\{m_{n}<\alpha_{1}\right\}=1-\lim _{n} P^{n}\left\{x<\alpha_{1}\right\}=1,
\end{align*}
$$

since by hypothesis $f(1)>0$ so that by (10), $P\left\{x<\alpha_{1}\right\}<1$. In fact, for any $r \geqq 0$,

$$
\begin{align*}
E\left(s^{r}\right) & =\sum_{n=1}^{\infty} n^{r} P\{s=n\} \leqq \sum_{n=1}^{\infty} n^{r} P\{s>n-1\} \tag{16}\\
& \leqq 1+\sum_{n=2}^{\infty} n^{r} P\left\{m_{n-1}<\alpha_{1}\right\} \\
& =1+\sum_{n=2}^{\infty} n^{r} P^{n-1}\left\{x<\alpha_{1}\right\}<\infty
\end{align*}
$$

so that s has finite moments of all orders.
It is of interest to consider the special case $g(n)=c n, 0<c<\infty$. Here $f(n)=c$ and $\alpha_{n}=\alpha$, where α is defined by

$$
\begin{equation*}
\int(x-\alpha)+d F(x)=c \tag{17}
\end{equation*}
$$

and s is the first $j \geqq 1$ for which $x_{j} \geqq \alpha$. Hence

$$
\begin{align*}
P\{s=j\} & =P\{x \geqq \alpha\} P^{j-1}\{x<\alpha\}, \\
E(s) & =\frac{1}{P\{x \geqq \alpha\}}, \\
E\left(y_{s}\right) & =\sum_{j=1}^{\infty} P\{s=j\} E\left(m_{j}-c j \mid s=j\right), \tag{18}\\
E\left(m_{j} \mid s=j\right) & =E\left(x_{j} \mid x_{1}<\alpha, \cdots, x_{j-1}<\alpha, x_{j} \geqq \alpha\right) \\
& =\frac{1}{P\{x \geqq \alpha\}} \int_{\{x \geqq \alpha\}} x d F(x),
\end{align*}
$$

so that

$$
\begin{align*}
E\left(y_{s}\right) & =\frac{1}{P\{x \geqq \alpha\}}\left[\int_{\{x \geqq \alpha\}} x d F(x)-c\right] \tag{19}\\
& =\frac{1}{P\{x \geqq \alpha\}}\left[\int(x-\alpha)^{+} d F(x)-c+\alpha P\{x \geqq \alpha\}\right]=\alpha
\end{align*}
$$

an elegant relation.

3. General theorems

In the following three lemmas we assume that $\left(y_{n}, \mathcal{F}_{n}\right)$ is any integrable stochastic sequence and that s and t are any sampling variables such that $E\left(y_{s}\right)$ and $E\left(y_{t}\right)$ exist.

Lemma 1. If for each n,

$$
\begin{equation*}
E\left(y_{s} \mid \mathfrak{F}_{n}\right) \geqq y_{n} \quad \text { if } \quad s>n \tag{20}
\end{equation*}
$$

and

$$
\begin{equation*}
E\left(y_{t} \mid \mathfrak{F}_{n}\right) \leqq y_{n} \quad \text { if } \quad s=n, t>n \tag{21}
\end{equation*}
$$

then

$$
\begin{equation*}
E\left(y_{s}\right) \geqq E\left(y_{t}\right) . \tag{22}
\end{equation*}
$$

Conversely, if $E\left(y_{\mathrm{s}}\right)$ is finite and (22) holds for every t, then (20) and (21) hold for every t.

Proof.

$$
\begin{align*}
E\left(y_{s}\right) & =\sum_{n=1}^{\infty} \int_{\{s=n, t \leqq n\}} y_{s} d P+\sum_{n=1}^{\infty} \int_{\{s=n, t>n\}} y_{n} d P \tag{23}\\
& =\sum_{n=1}^{\infty} \int_{\{s \geqq n, t=n\}} y_{s} d P+\sum_{n=1}^{\infty} \int_{\{s=n, t>n\}} y_{n} d P \\
& \geqq \sum_{n=1}^{\infty} \int_{\{s \geqq n, t=n\}} y_{n} d P+\sum_{n=1}^{\infty} \int_{\{s=n, t>n\}} y_{t} d P \\
& =E\left(y_{t}\right) .
\end{align*}
$$

To prove the converse, for a fixed n let

$$
\begin{equation*}
V=\left\{s>n \quad \text { and } E\left(y_{s} \mid \mathfrak{F}_{n}\right)<y_{n}\right\} ; \tag{24}
\end{equation*}
$$

then $V \in \mathscr{F}_{n}$. Define

$$
t^{\prime}= \begin{cases}s, & \omega \notin V, \tag{25}\\ n, & \omega \in V .\end{cases}
$$

Then t^{\prime} is a sampling variable. Since $E\left(y_{s}\right)$ is finite, by (22) $E\left(y_{n}\right)<\infty$ and then $E\left(y_{t^{\prime}}\right)$ exists. But

$$
\begin{align*}
E\left(y_{t^{\prime}}\right) & =\int_{\left\{t^{\prime}=s\right\}} y_{t^{\prime}} d P+\int_{V} y_{t^{\prime}} d P=\int_{\left.\mid t^{\prime}=s\right\}} y_{s} d P+\int_{V} y_{n} d P \tag{26}\\
& \geqq \int_{\left\{t^{\prime}=s\right\}} y_{s} d P+\int_{V} y_{s} d P=E\left(y_{s}\right) .
\end{align*}
$$

But by (22), $E\left(y_{t^{\prime}}\right) \leqq E\left(y_{s}\right)$. Hence

$$
\begin{equation*}
\int_{V} y_{n} d P=\int_{V} y_{s} d P \tag{27}
\end{equation*}
$$

and therefore $P(V)=0$, which proves (20). To prove (21) let

$$
\begin{equation*}
V=\left\{s=n, t>n, \quad \text { and } \quad E\left(y_{t} \mid \mathfrak{F}_{n}\right)>y_{n}\right\}, \tag{28}
\end{equation*}
$$

and define

$$
t^{\prime}= \begin{cases}s, & \omega \notin V, \tag{29}\\ t, & \omega \in V .\end{cases}
$$

Then

$$
\begin{align*}
E\left(y_{t^{\prime}}\right) & =\int_{\left\{t^{\prime}=8\right\}} y_{t^{\prime}} d P+\int_{V} y_{t^{\prime}} d P=\int_{\left\{t^{\prime}=s\right\}} y_{s} d P+\int_{V} y_{t} d P \tag{30}\\
& \geqq \int_{\left\{t^{\prime}=s\right\}} y_{s} d P+\int_{V} y_{n} d P=\int_{\left\{t^{\prime}=s\right\}} y_{s} d P+\int_{V} y_{s} d P=E\left(y_{s}\right),
\end{align*}
$$

and again $P(V)=0$, which proves (21).
Lemma 2. If for each n,

$$
\begin{equation*}
E\left(y_{n+1} \mid \mathfrak{F}_{n}\right) \geqq y_{n}, \quad s>n, \tag{31}
\end{equation*}
$$

and if

$$
\begin{equation*}
\lim _{n} \inf \int_{\{8>n\}} y_{n}^{+} d P=0, \tag{32}
\end{equation*}
$$

then for each n,

$$
\begin{equation*}
E\left(y_{\bullet} \mid \mathfrak{F}_{n}\right) \geqq y_{n}, \quad s \geqq n \tag{33}
\end{equation*}
$$

Proof. (compare [2], p. 310). Let $V \in F_{n}$ and $U=V\{s \geqq n\}$.
Then

$$
\begin{align*}
\int_{U} y_{n} d P & =\int_{V\{s=n\}} y_{n} d P+\int_{V\{s>n\}} y_{n} d P \tag{34}\\
& \leqq \int_{V\{s=n\}} y_{n} d P+\int_{V\{s>n\}} y_{n+1} d P \\
& =\int_{V\{n \leqq s \leqq n+1\}} y_{s} d P+\int_{V\{s>n+1\}} y_{n+1} d P \\
& \leqq \cdots \leqq \int_{V\{n \leqq s \leqq n+r\}} y_{s} d P+\int_{V\{s>n+r\}} y_{n+r} d P \\
& \leqq \int_{V\{n \leqq s \leqq n+r\}} y_{s} d P+\int_{\{s>n+r\}} y_{n+r}^{+} d P .
\end{align*}
$$

Therefore

$$
\begin{equation*}
\int_{U} y_{n} d P \leqq \int_{V\{s \geqq n\}} y_{s} d P+\liminf _{n} \int_{\{s>n\}} y_{n}^{+} d P=\int_{U} y_{s} d P, \tag{35}
\end{equation*}
$$

which is equivalent to (33).
Lemma 3. If for each n,

$$
E\left(y_{n+1} \mid \mathfrak{F}_{n}\right) \leqq y_{n}, \quad s \leqq n
$$

and if

$$
\begin{equation*}
\liminf _{n} \int_{\{t>n\}} y_{n}^{-} d P=0 \tag{37}
\end{equation*}
$$

then

$$
\begin{equation*}
E\left(y_{t} \mid \mathfrak{F}_{n}\right) \leqq y_{n}, \quad s=n, \quad t \geqq n \tag{38}
\end{equation*}
$$

Proof. Let $V \in \mathcal{F}_{n}$ and $U=V\{s=n, t \geqq n\}$. Then

$$
\begin{align*}
\int_{U} y_{n} d P & =\int_{V\{s=n, t=n\}} y_{n} d P+\int_{V\{s=n, t>n\}} y_{n} d P \tag{39}\\
& \geqq \int_{V\{s=n, t=n\}} y_{n} d P+\int_{V\{s=n, t>n\}} y_{n+1} d P \\
& =\int_{V\{s=n, n \leqq t \leqq n+1\}} y_{t} d P+\int_{V\{s=n, t>n+1\}} y_{n+1} d P \\
& \geqq \cdots \geqq \int_{V\{s=n, n \leqq t \leqq n+r\}} y_{t} d P+\int_{V\{s=n, t>n+r\}} y_{n+r} d P \\
& \geqq \int_{V\{s=n, n \leqq t \leqq n+r\}} y_{t} d P-\int_{\{t>n+r\}} y_{n+r}^{--r} d P .
\end{align*}
$$

Therefore

$$
\begin{equation*}
\int_{U} y_{n} d P \geqq \int_{V\{s=n, t \geqq n\}} y_{t} d P-\lim _{n} \inf \int_{\{t>n\}} y_{n}^{-} d P=\int_{U} y_{t} d P \tag{40}
\end{equation*}
$$

which is equivalent to (38).
We can now state the main result of the present paper.
Theorem 1. Let $\left(y_{n}, \mathfrak{F}_{n}\right)$ be an integrable stochastic sequence in the monotone case and let s be the conservative sampling variable

$$
\begin{equation*}
s=\text { least positive integer } j \text { such that } E\left(y_{j+1} \mid \mathfrak{F}_{j}\right) \leqq y_{j} \tag{41}
\end{equation*}
$$

Suppose that $E\left(y_{s}\right)$ exists and that

$$
\begin{equation*}
\liminf _{n} \int_{\{s>n\}} y_{n}^{+} d P=0 \tag{42}
\end{equation*}
$$

If t is any sampling variable such that $E\left(y_{t}\right)$ exists and

$$
\begin{equation*}
\liminf _{n} \int_{\{t>n\}} y_{n}^{-} d P=0 \tag{43}
\end{equation*}
$$

then

$$
\begin{equation*}
E\left(y_{s}\right) \geqq E\left(y_{t}\right) . \tag{44}
\end{equation*}
$$

Proof. From lemmas 1, 2, and 3 and relations (5).
We shall now establish a lemma (see [2], p. 303) which provides sufficient conditions for (42) and (43).

Lemma 4. Let $\left(y_{n}, \mathfrak{F}_{n}\right)$ be a stochastic sequence such that $E\left(y_{n}^{+}\right)<\infty$ for each $n \geqq 1$, and let s be any sampling variable. If there exists a nonnegative random variable u such that

$$
\begin{equation*}
E(s u)<\infty \tag{45}
\end{equation*}
$$

and if

$$
\begin{equation*}
E\left[\left(y_{n+1}-y_{n}\right)^{+} \mid \mathfrak{F}_{n}\right] \leqq u, \quad s>n \tag{46}
\end{equation*}
$$

then

$$
\begin{equation*}
E\left(y_{s}^{+}\right)<\infty, \quad \lim _{n} \int_{\{s>n\}} y_{n}^{+} d P=0 \tag{47}
\end{equation*}
$$

Proof. Define

$$
\begin{equation*}
z_{1}=y_{1}^{+}, \quad z_{n+1}=\left(y_{n+1}-y_{n}\right)^{+} \quad \text { for } \quad n \geqq 1, \quad w_{n}=z_{1}+\cdots+z_{n} \tag{48}
\end{equation*}
$$

Then

$$
\begin{equation*}
y_{n}^{+} \leqq w_{n} \tag{49}
\end{equation*}
$$

(and hence $y_{n}^{+} \leqq w_{s}$ if $s \geqq n$), and by (46)

$$
\begin{equation*}
E\left(z_{n+1} \mid \mathfrak{F}_{n}\right) \leqq u, \quad s>n \tag{50}
\end{equation*}
$$

Hence

$$
\begin{align*}
E\left(y_{s}^{+}\right) & \leqq E\left(w_{s}\right)=\sum_{n=1}^{\infty} \int_{\{s=n\}} w_{n} d P=\sum_{n=1}^{\infty} \sum_{j=1}^{n} \int_{\{s=n\}} z_{j} d P \tag{51}\\
& =\sum_{j=1}^{\infty} \sum_{n=j}^{\infty} \int_{\{s=n\}} z_{j} d P=\sum_{j=1}^{\infty} \int_{\{s>j-1\}} z_{j} d P \\
& =E\left(y_{1}^{+}\right)+\sum_{j=2}^{\infty} \int_{\{s>j-1\}} E\left(z_{j} \mid \mathfrak{F}_{j-1}\right) d P \\
& \leqq E\left(y_{1}^{+}\right)+\sum_{j=2}^{\infty} \int_{\{s>j-1\}} u d P=E\left(y_{1}^{+}\right)+\sum_{j=2}^{\infty} \sum_{n=j}^{\infty} \int_{\{s=n\}} u d P \\
& =E\left(y_{1}^{+}\right)+\sum_{n=2}^{\infty} \int_{\{s=n\}}(n-1) u d P=E\left(y_{1}^{+}\right)+E(s u)-E(u) \\
& \leqq E\left(y_{1}^{+}\right)+E(s u)<\infty
\end{align*}
$$

and hence from (49)

$$
\begin{equation*}
\lim _{n} \int_{\{s>n\}} y_{n}^{+} d P \leqq \lim _{n} \int_{\{s>n\}} w_{s} d P=0 \tag{52}
\end{equation*}
$$

Remark. Lemma 4 remains valid if we replace a^{+}by a^{-}or by $|a|$ throughout.

4. Application to the sequential decision problem of section 2

Recalling the problem of section 2 , let x, x_{1}, x_{2}, \cdots be independent and identically distributed random variables with $E\left(x^{+}\right)<\infty, \mathfrak{F}_{n}$ the σ-algebra generated by $x_{1}, \cdots, x_{n}, g(n) \geqq 0, f(n)=g(n+1)-g(n)>0$ and nondecreasing, $m_{n}=$ $\max \left(x_{1}, \cdots, x_{n}\right)$, and $y_{n}=m_{n}-g(n)$. The constants α_{n} are defined by

$$
\begin{equation*}
E\left[\left(x-\alpha_{n}\right)^{+}\right]=f(n) \tag{53}
\end{equation*}
$$

and are nonincreasing; we are in the monotone case, and the conservative sampling variable s is the first $j \geqq 1$ such that $m_{j} \geqq \alpha_{j}$; thus

$$
\begin{equation*}
\{s>n\}=\left\{m_{n}<\alpha_{n}\right\} \tag{54}
\end{equation*}
$$

We have shown in section 2 that

$$
\begin{equation*}
P\{s<\infty\}=1, \quad E\left(s^{r}\right)<\infty \quad \text { for } \quad r \geqq 0 \tag{55}
\end{equation*}
$$

We wish to apply theorem 1 . As concerns s it will suffice to show that $E\left(y_{s}^{+}\right)<\infty$ and that

$$
\begin{equation*}
\lim _{n} \int_{\{8>n\}} y_{n}^{+} d P=0 \tag{56}
\end{equation*}
$$

which we shall do by using lemma 4 . Let

$$
\begin{equation*}
Y_{n}=m_{n}^{+}-g(n) . \tag{57}
\end{equation*}
$$

Then

$$
\begin{equation*}
Y_{n}^{+}=y_{n}^{+}, \quad E\left(Y_{n}^{+}\right)=E\left(y_{n}^{+}\right) \leqq E\left(x_{1}^{+}+\cdots+x_{n}^{+}\right)=n E\left(x^{+}\right)<\infty, \tag{58}
\end{equation*}
$$

and

$$
\begin{align*}
E\left[\left(Y_{n+1}-Y_{n}\right)^{+} \mid \mathfrak{F}_{n}\right] & =E\left\{\left[m_{n+1}^{+}-m_{n}^{+}-f(n)\right]^{+} \mid \mathfrak{F}_{n}\right\} \tag{59}\\
& \leqq E\left[\left(m_{n+1}^{+}-m_{n}^{+}\right) \mid \mathfrak{F}_{n}\right] \leqq E\left(x_{n+1}^{+} \mid \mathfrak{F}_{n}\right) \\
& =E\left(x^{+}\right)<\infty .
\end{align*}
$$

Hence by lemma 4, setting $u=E\left(x^{+}\right)$,

$$
\begin{equation*}
E\left(y_{s}^{+}\right)=E\left(Y_{s}^{+}\right)<\infty \tag{60}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n} \int_{\{\Delta>n\}} y_{n}^{+} d P=\lim _{n} \int_{\{s>n\}} Y_{n}^{+} d P=0, \tag{61}
\end{equation*}
$$

which were to be proved.
To establish the conditions on t of theorem 1 we assume that $E x^{-}<\infty$; then since $y_{n}^{-} \leqq x_{1}^{-}+g(n)$ it follows that $E\left(y_{n}^{-}\right)<\infty$. Define a random variable u by setting

$$
\begin{equation*}
u(\omega)=f(n) \quad \text { if } \quad t(\omega)=n \tag{62}
\end{equation*}
$$

Since

$$
\begin{equation*}
\left(y_{n+1}-y_{n}\right)^{-} \leqq f(n) \tag{63}
\end{equation*}
$$

and $f(n)$ is nondecreasing, it follows that

$$
\begin{equation*}
E\left[\left(y_{n+1}-y_{n}\right)^{\left.-\mid \mathfrak{F}_{n}\right]} \leqq u \quad \text { if } \quad t \geqq n .\right. \tag{64}
\end{equation*}
$$

We now assume that $f(n) \leqq h(n)$, where $h(n)$ is a polynomial of degree $r \geqq 0$, and that $E\left(t^{r+1}\right)<\infty$. Then

$$
\begin{equation*}
E(t u)=\sum_{n=1}^{\infty} \int_{\{t=n\}} n f(n) d P \leqq \sum_{n=1}^{\infty} n h(n) P\{t=n\} . \tag{65}
\end{equation*}
$$

Since

$$
\begin{equation*}
E\left(t^{r+1}\right)=\sum_{n=1}^{\infty} n^{r+1} P\{t=n\}<\infty, \tag{66}
\end{equation*}
$$

it follows that $E(t u)<\infty$. Then by the remark following lemma 4,

$$
\begin{equation*}
E\left(y_{\imath}^{-}\right)<\infty \quad \text { and } \lim _{n} \int_{\{t>n\}} y_{n}^{-} d P=0, \tag{67}
\end{equation*}
$$

and all the conditions of theorem 1 are established. Thus we have proved
Theorem 2. Suppose that $E|x|<\infty$ and that in addition to the conditions on $g(n)$ in the first paragraph of this section we have $f(n) \leqq h(n)$, where $h(n)$ is a polynomial of degree $r \geqq$. If t is any sampling variable for which $E\left(t^{r+1}\right)<\infty$ then $-\infty<E\left(y_{t}\right) \leqq E\left(y_{e}\right)<\infty$, where s is the conservative sampling variable defined by (54).

If $g(n)=n c$ then $f(n)=c$ and we can take $r=0$. Hence
Corollary 1. If $E|x|<\infty$ and $y_{n}=m_{n}-c n, 0<c<\infty$, then if t is any sampling variable for which $E(t)<\infty, E\left(y_{t}\right) \leqq E\left(y_{\varepsilon}\right)=\alpha$ [see (19)], where α is defined by $E(x-\alpha)^{+}=c$ and $s=$ the first $j \geqq 1$ such that $x_{j} \geqq \alpha$. Thus s is optimal in the class of all sampling variables with finite expectations.

To replace the condition $E\left(t^{r+1}\right)<\infty$ in theorem 2 and corollary 1 by conditions on y_{t} we require the following theorem which is of interest in itself. We omit the proof.

Theorem 3. Let $F(u)$ be a distribution function. Define $G(u)=\prod_{n=1}^{\infty} F(u+n)$. Then $G(u)$ is a distribution function if and only if

$$
\begin{equation*}
\int_{0}^{\infty} u d F(u)<\infty \tag{68}
\end{equation*}
$$

and for any integer $b \geqq 1$,

$$
\begin{equation*}
\int_{0}^{\infty} u^{b} d G(u)<\infty \tag{69}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
\int_{0}^{\infty} u^{b+1} d F(u)<\infty \tag{70}
\end{equation*}
$$

Corollary 2. If $y_{n}=m_{n}-c n, 0<c<\infty$, and b is any integer $\geqq 1$, then

$$
\begin{equation*}
E\left(\sup _{n \geqq 1} y_{n}^{+}\right)^{b}<\infty \tag{71}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
E\left(x^{+}\right)^{b+1}<\infty . \tag{72}
\end{equation*}
$$

Proof. We can assume $c=1$. Define

$$
\begin{equation*}
G(u)=P\left\{\sup _{n \geqq 1} y_{n}^{+} \leqq u\right\} . \tag{73}
\end{equation*}
$$

Then for $u \geqq 0$,

$$
\begin{align*}
G(u) & =P\left\{x_{1} \leqq u+1, x_{2} \leqq u+2, \cdots, x_{n} \leqq u+n, \cdots\right\} \tag{74}\\
& =\prod_{n=1}^{\infty} F(u+n)
\end{align*}
$$

By theorem 3,

$$
\begin{equation*}
E\left(\sup _{n \geqq 1} y_{n}^{+}\right)^{b}=\int_{0}^{\infty} u^{b} d G(u)<\infty \tag{75}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
\int_{0}^{\infty} u^{b+1} d F(u)=E\left(x^{+}\right)^{b+1}<\infty . \tag{76}
\end{equation*}
$$

Theorem 4. Assume $E|x|<\infty, E\left(x^{+}\right)^{2}<\infty$. If $y_{n}=m_{n}-g(n)$ where $g(n)$ is a polynomial of degree $r \geqq 1$ such that

$$
\begin{equation*}
g(1)>0 \tag{77}
\end{equation*}
$$

$g(n+1)-g(n)$ is positive and nondecreasing, then for any sampling variable t, (78)

$$
E\left(y_{\imath}\right) \leqq E\left(y_{s}\right)
$$

where s is the conservative sampling variable defined by (54).
Proof. By theorem 2, if $E\left(t^{r}\right)<\infty$ then (78) holds. Hence we can assume that $E\left(t^{r}\right)=\infty$. Now

$$
\begin{array}{ll}
g(1)>0, & f(1)=g(2)-g(1)>0, \\
g(2) \geqq g(1)+f(1), & g(3)-g(2) \geqq f(1), \\
g(3) \geqq g(1)+2 f(1), &
\end{array}
$$

$$
g(n) \geqq g(1)+(n-1) f(1)
$$

Let

$$
\begin{equation*}
a=\frac{1}{2} \min [g(1), f(1)]>0 \tag{80}
\end{equation*}
$$

Then by (79),

$$
\begin{equation*}
g(n) \geqq a n \text { for } n \geqq 1 \tag{81}
\end{equation*}
$$

Let

$$
\begin{equation*}
\tilde{y}_{n}=m_{n}-\frac{a}{2} n \tag{82}
\end{equation*}
$$

By corollary 2, $E\left(\tilde{y}_{t}^{+}\right)<\infty$. Then since

$$
\begin{equation*}
y_{t}=\tilde{y}_{t}+\frac{a}{2} t-g(t) \leqq \tilde{y}_{t}^{+}-\frac{1}{2} g(t) \tag{83}
\end{equation*}
$$

we have

$$
\begin{equation*}
E\left(y_{t}\right) \leqq E\left(\tilde{y}_{t}^{+}\right)-\frac{1}{2} E[g(t)]=-\infty \tag{84}
\end{equation*}
$$

so that (78) holds in this case too.
Remark. If in the case $g(n)=c n$ we define $\bar{y}_{n}=x_{n}-c n$, then

$$
\begin{equation*}
\bar{y}_{n} \leqq y_{n} \tag{85}
\end{equation*}
$$

$$
\bar{y}_{s}=y_{s} .
$$

Hence for any sampling variable t,

$$
\begin{equation*}
E\left(\bar{y}_{i}\right) \leqq E\left(y_{t}\right) \leqq E\left(y_{s}\right)=E\left(\bar{y}_{s}\right), \tag{86}
\end{equation*}
$$

so that s is also optimal for the stochastic sequence $\left(\bar{y}_{n}, \mathfrak{F}_{n}\right)$.

b. A result of Snell

As an application of lemmas 1 and 2, we are going to obtain Snell's result on sequential game theory [3].

Lemma 5 (Snell). Let $\left(y_{n}, \mathfrak{F}_{n}\right)$ be a stochastic sequence satisfying $y_{n} \geqq u$ for
each n with $E|u|<\infty$. Then there exists a semimartingale (x_{n}, \mathfrak{F}_{n}) such that for every sampling variable t and every n,

$$
\begin{gather*}
E\left(x_{t}\left|\mathfrak{F}_{n}\right| \geqq x_{n} \quad \text { if } t \geqq n, \quad x_{n} \geqq E\left(u \mid \mathfrak{F}_{n}\right),\right. \tag{87}\\
x_{n}=\min \left[y_{n}, E\left(x_{n+1} \mid \mathfrak{F}_{n}\right)\right], \tag{88}
\end{gather*}
$$

and

$$
\begin{equation*}
\liminf x_{n}=\liminf y_{n} . \tag{89}
\end{equation*}
$$

We will assume the validity of this lemma, and prove the following theorem by applying lemmas 1 and 2.
Theorem 5 (Snell). Let $\left(y_{n}, \mathfrak{F}_{n}\right)$ and $\left(x_{n}, \mathfrak{F}_{n}\right)$ satisfy the conditions of lemma 5. For $\epsilon \geqq 0$ define $s=j$ to be the first $j \geqq 1$ such that $x_{j} \geqq y_{j}-\epsilon$. If $\epsilon>0$, then

$$
\begin{equation*}
E\left(y_{s}\right) \leqq E\left(y_{t}\right)+\epsilon \tag{90}
\end{equation*}
$$

for every sampling variable . If $\epsilon=0$ and if $P\{s<\infty\}=1$, then (90) still holds.
Proof. It is obvious that in both cases s is a sampling variable. We need to verify that $P\{s<\infty\}=1$. If $\epsilon>0$, by (89) this is true.

Since $\left(x_{n}, \mathscr{F}_{n}\right)$ is a semimartingale,

$$
\begin{equation*}
E\left(x_{n+1} \mid F_{n}\right) \geqq x_{n} . \tag{91}
\end{equation*}
$$

By (88) and the definition of s,

$$
\begin{equation*}
E\left(x_{n+1} \mid \mathfrak{F}_{n}\right)=x_{n} \quad \text { for } \quad s>n . \tag{92}
\end{equation*}
$$

Since $-x_{n} \leqq E\left(-u \mid \mathcal{F}_{n}\right)$ and $E|u|<\infty$, by lemma 2 and (92), we have

$$
\begin{equation*}
E\left(x_{s} \mid \mathfrak{F}_{n}\right) \leqq x_{n} \quad \text { for } \quad s>n . \tag{93}
\end{equation*}
$$

By (87), (93), and lemma 1, we obtain $E\left(x_{s}\right) \leqq E\left(x_{t}\right)$, and therefore, by definition of s,

$$
\begin{equation*}
E\left(y_{s}\right) \leqq E\left(x_{s}\right)+\epsilon \leqq E\left(x_{t}\right)+\epsilon \leqq E\left(y_{t}\right)+\epsilon . \tag{94}
\end{equation*}
$$

Thus the proof is complete.
J. MacQueen and R. G. Miller, Jr., in a recent paper [1], treat the problem of section 2 by completely different methods. Reference should also be made to a paper by C. Derman and J. Sacks [4], in which the formulation and results are very similar to those of the present paper.

REFERENCES

[1] J. MacQueen and R. G. Miller, Jr., "Optimal persistence policies," J. Operations Res. Soc. America, Vol. 8 (1960), pp. 362-380.
[2] J. L. Doob, Stochastic Processes, New York, Wiley, 1953.
[3] J. L. Snell, "Application of martingale system theorems," Trans. Amer. Math. Soc., Vol. 73 (1952), pp. 293-312.
[4] C. Derman and J. Sacks, "Replacement of periodically inspected equipment (an optimal optional stopping rule)," to appear in Naval Res. Logist. Quart., Vol. 7 (1960).

