A MARTINGALE SYSTEM THEOREM AND APPLICATIONS

Y. S. CHOW

IBM RESEARCH CENTER, YORKTOWN HEIGHTS AND HERBERT ROBBINS COLUMBIA UNIVERSITY

1. Introduction

Let (W, \mathfrak{F}, P) be a probability space with points $\omega \in W$ and let (y_n, \mathfrak{F}_n) , $n = 1, 2, \cdots$, be an *integrable stochastic sequence*: y_n is a sequence of random variables, \mathfrak{F}_n is a sequence of σ -algebras with $\mathfrak{F}_n \subset \mathfrak{F}_{n+1} \subset \mathfrak{F}$, y_n is measurable with respect to \mathfrak{F}_n , and $E(y_n)$ exists, $-\infty \leq E(y_n) \leq \infty$. A random variable $s = s(\omega)$ with positive integer values is a sampling variable if $\{s \leq n\} \in \mathfrak{F}_n$ and $\{s < \infty\} = W$. (We denote by $\{\cdots\}$ the set of all ω satisfying the relation in braces, and understand equalities and inequalities to hold up to sets of *P*-measure 0.) We shall be concerned with the problem of finding, if it exists, a sampling variable *s* which maximizes $E(y_s)$.

To define a sampling variable s amounts to specifying a sequence of sets $B_n \in \mathfrak{F}_n$ such that

(1)
$$0 = B_0 \subset \cdots \subset B_n \subset B_{n+1} \subset \cdots ; \bigcup_{1}^{n} B_n = W,$$

the sampling variable s being defined by

(2)
$$\{s \leq n\} = B_n, \qquad \{s = n\} = B_n - B_{n-1}.$$

We shall be particularly interested in the case in which the sequence (y_n, \mathfrak{F}_n) is such that the sequence of sets

$$B_n = \{E(y_{n+1}|\mathfrak{F}_n) \leq y_n\}$$

satisfies (1). We shall call this the monotone case. In this case a sampling variable s is defined by

(4)
$$\{s \leq n\} = \{E(y_{n+1}|\mathfrak{F}_n) \leq y_n\},\$$

and s satisfies

(5)
$$E(y_{n+1}|\mathfrak{F}_n) \begin{cases} > y_n, & s > n, \\ \leq y_n, & s \leq n. \end{cases}$$

The relations (5) will be fundamental in what follows.

This research was sponsored in part by the Office of Naval Research under Contract No. Nonr-226 (59), Project No. 042-205.

In the monotone case we have for the sampling variable s defined by (4) the following characterization:

(6)
$$s = \text{least positive integer } j \text{ such that } E(y_{j+1}|\mathfrak{F}_j) \leq y_j.$$

Now even in the nonmonotone case we can always define a random variable s by (6), setting $s = \infty$ if there is no such j; let us call it the *conservative* random variable. The following statement is evident: the necessary and sufficient condition that there exists a sampling variable s satisfying (5) is that we are in the monotone case, and in this case s is the conservative random variable.

In section 3 we are going to show that in the monotone case, under certain regularity assumptions, the conservative sampling variable s maximizes $E(y_s)$.

2. An example

Before proceeding with the general theory we shall give a simple and instructive example of the monotone case in the form of a *sequential decision problem*.

Let x, x_1, x_2, \cdots be a sequence of independent and identically distributed random variables with $E(x^+) < \infty$, where we denote $a^+ = \max(a, 0)$, $a^- = \max(-a, 0)$. We observe the sequence x_1, x_2, \cdots sequentially and can stop with any $n \ge 1$. If we stop with x_n we receive the reward $m_n = \max(x_1, \cdots, x_n)$, but the cost of taking the observations x_1, \cdots, x_n is some strictly increasing function $g(n) \ge 0$, so that our net gain in stopping with x_n is $y_n = m_n - g(n)$. The decision whether to stop with x_n or to take the next observation x_{n+1} must be a function of x_1, \cdots, x_n alone. Problem: what stopping rule maximizes the expected value $E(y_s)$, where s is the random sample size defined by the stopping rule? We assume that the distribution function $F(u) = P\{x \le u\}$ is known. That $E(y_n)$ exists follows from the inequality

(7)
$$y_n^+ \leq x_1^+ + \cdots + x_n^+,$$

which implies that $E(y_n^+) < \infty$.

Let \mathfrak{F}_n be the σ -algebra generated by x_1, \cdots, x_n . Then (y_n, \mathfrak{F}_n) is an integrable stochastic sequence, and we have

(8)
$$E(y_{n+1}|\mathfrak{F}_n) - y_n = \int [m_{n+1} - m_n] dF(x_{n+1}) - [g(n+1) - g(n)]$$
$$= \int (x - m_n)^+ dF(x) - f(n),$$

where we have set

(9) f(n) = g(n+1) - g(n) = cost of taking the (n+1)st observation.

Since we have assumed g(n) to be strictly increasing, and f(n) > 0, it is easily seen that there exist unique constants α_n such that

(10)
$$\int (x - \alpha_n)^+ dF(x) = f(n), \qquad n \ge 1.$$

By (8) and (10),

(11)
$$E(y_{n+1}|\mathfrak{F}_n) \begin{cases} > y_n & \text{if } m_n < \alpha_n, \\ \leq y_n & \text{if } m_n \geq \alpha_n. \end{cases}$$

The conservative random variable s defined by (6) is therefore

(12)
$$s = \text{least positive integer } j \text{ such that } m_j \ge \alpha_j.$$

We are in the monotone case if and only if this s is a sampling variable and for every n

(13)
$$\{E(y_{n+1}|\mathfrak{F}_n) \leq y_n\} \subset \{E(y_{n+2}|\mathfrak{F}_{n+1}) \leq y_{n+1}\},$$

that is, $m_n \ge \alpha_n$ implies $m_{n+1} \ge \alpha_{n+1}$, which will certainly be the case, since $m_n \le m_{n+1}$, if $\alpha_n \ge \alpha_{n+1}$, that is, if f(n) is nondecreasing and hence α_n is non-increasing. We shall henceforth assume this to hold. We shall now show that in this case the conservative random variable s is in fact a sampling variable, that is, that $P\{s < \infty\} = 1$. We have

(14)
$$\{s > n\} = \{m_n < \alpha_n\},\$$

and hence

(15)
$$P\{s < \infty\} = 1 - \lim_{n} P\{s > n\} = 1 - \lim_{n} P\{m_n < \alpha_n\}$$

$$\geq 1 - \lim_{n} P\{m_n < \alpha_1\} = 1 - \lim_{n} P^n\{x < \alpha_1\} = 1,$$

since by hypothesis f(1) > 0 so that by (10), $P\{x < \alpha_1\} < 1$. In fact, for any $r \ge 0$,

(16)
$$E(s^{r}) = \sum_{n=1}^{\infty} n^{r} P\{s=n\} \leq \sum_{n=1}^{\infty} n^{r} P\{s>n-1\}$$

$$\leq 1 + \sum_{n=2}^{\infty} n^{r} P\{m_{n-1} < \alpha_{1}\}$$

$$= 1 + \sum_{n=2}^{\infty} n^{r} P^{n-1}\{x < \alpha_{1}\} < \infty,$$

so that s has finite moments of all orders.

It is of interest to consider the special case g(n) = cn, $0 < c < \infty$. Here f(n) = c and $\alpha_n = \alpha$, where α is defined by

(17)
$$\int (x - \alpha)^+ dF(x) = c,$$

and s is the first $j \ge 1$ for which $x_j \ge \alpha$. Hence

FOURTH BERKELEY SYMPOSIUM: CHOW AND ROBBINS

$$P\{s = j\} = P\{x \ge \alpha\} P^{j-1}\{x < \alpha\},$$

$$E(s) = \frac{1}{P\{x \ge \alpha\}},$$
(18)
$$E(y_s) = \sum_{j=1}^{\infty} P\{s = j\} E(m_j - cj|s = j),$$

$$E(m_j|s = j) = E(x_j|x_1 < \alpha, \cdots, x_{j-1} < \alpha, x_j \ge \alpha)$$

$$= \frac{1}{P\{x \ge \alpha\}} \int_{\{x \ge \alpha\}} x \, dF(x),$$

so that

(19)
$$E(y_*) = \frac{1}{P\{x \ge \alpha\}} \left[\int_{\{x \ge \alpha\}} x \, dF(x) - c \right]$$
$$= \frac{1}{P\{x \ge \alpha\}} \left[\int (x - \alpha)^+ \, dF(x) - c + \alpha P\{x \ge \alpha\} \right] = \alpha,$$

an elegant relation.

3. General theorems

In the following three lemmas we assume that (y_n, \mathfrak{F}_n) is any integrable stochastic sequence and that s and t are any sampling variables such that $E(y_s)$ and $E(y_t)$ exist.

LEMMA 1. If for each n,

(20)
$$E(y_s|\mathfrak{F}_n) \geq y_n$$
 if $s > n$,
and
(21) $E(y_t|\mathfrak{F}_n) \leq y_n$ if $s = n, t > n$,

then

(22)
$$E(y_s) \geqq E(y_t).$$

Conversely, if $E(y_s)$ is finite and (22) holds for every t, then (20) and (21) hold for every t.

Proof.

(23)
$$E(y_{s}) = \sum_{n=1}^{\infty} \int_{\{s=n, t \leq n\}} y_{s} dP + \sum_{n=1}^{\infty} \int_{\{s=n, t > n\}} y_{n} dP$$
$$= \sum_{n=1}^{\infty} \int_{\{s \geq n, t=n\}} y_{s} dP + \sum_{n=1}^{\infty} \int_{\{s=n, t > n\}} y_{n} dP$$
$$\geq \sum_{n=1}^{\infty} \int_{\{s \geq n, t=n\}} y_{n} dP + \sum_{n=1}^{\infty} \int_{\{s=n, t > n\}} y_{t} dP$$
$$= E(y_{t}).$$

To prove the converse, for a fixed n let

(24)
$$V = \{s > n \text{ and } E(y_s | \mathfrak{F}_n) < y_n\};$$

then $V \in \mathfrak{F}_n$. Define

(25)
$$t' = \begin{cases} s, & \omega \notin V, \\ n, & \omega \in V. \end{cases}$$

Then t' is a sampling variable. Since $E(y_s)$ is finite, by (22) $E(y_n) < \infty$ and then $E(y_{t'})$ exists. But

(26)
$$E(y_{t'}) = \int_{\{t'=s\}} y_{t'} dP + \int_{V} y_{t'} dP = \int_{\{t'=s\}} y_{s} dP + \int_{V} y_{n} dP$$
$$\geq \int_{\{t'=s\}} y_{s} dP + \int_{V} y_{s} dP = E(y_{s}).$$

But by (22), $E(y_{t'}) \leq E(y_s)$. Hence

(27)
$$\int_V y_n \, dP = \int_V y_s \, dP$$

and therefore P(V) = 0, which proves (20). To prove (21) let

(28)
$$V = \{s = n, t > n, \text{ and } E(y_t | \mathfrak{F}_n) > y_n\},\$$

and define

(29)
$$t' = \begin{cases} s, & \omega \notin V, \\ t, & \omega \in V. \end{cases}$$

Then

(30)
$$E(y_{t'}) = \int_{\{t'=s\}} y_{t'} dP + \int_{V} y_{t'} dP = \int_{\{t'=s\}} y_{s} dP + \int_{V} y_{t} dP$$
$$\geq \int_{\{t'=s\}} y_{s} dP + \int_{V} y_{n} dP = \int_{\{t'=s\}} y_{s} dP + \int_{V} y_{s} dP = E(y_{s}),$$

and again P(V) = 0, which proves (21).

LEMMA 2. If for each n,

(31)
$$E(y_{n+1}|\mathfrak{F}_n) \geq y_n, \qquad s > n,$$

and if

(32)
$$\liminf_{n} \int_{\{s>n\}} y_n^+ \, dP = 0,$$

then for each n,

(33)
$$E(y_s|\mathfrak{F}_n) \geq y_n, \qquad s \geq n.$$

FOURTH BERKELEY SYMPOSIUM: CHOW AND ROBBINS

PROOF. (compare [2], p. 310). Let $V \in \mathfrak{F}_n$ and $U = V\{s \ge n\}$. Then

$$(34) \qquad \int_{U} y_n dP = \int_{V\{s=n\}} y_n dP + \int_{V\{s>n\}} y_n dP$$

$$\leq \int_{V\{s=n\}} y_n dP + \int_{V\{s>n\}} y_{n+1} dP$$

$$= \int_{V\{n \le s \le n+1\}} y_s dP + \int_{V\{s>n+1\}} y_{n+1} dP$$

$$\leq \cdots \leq \int_{V\{n \le s \le n+r\}} y_s dP + \int_{V\{s>n+r\}} y_{n+r} dP$$

$$\leq \int_{V\{n \le s \le n+r\}} y_s dP + \int_{\{s>n+r\}} y_{n+r} dP.$$

Therefore

(35)
$$\int_U y_n dP \leq \int_{V\{s \geq n\}} y_s dP + \liminf_n \int_{\{s > n\}} y_n^+ dP = \int_U y_s dP,$$

which is equivalent to (33).

LEMMA 3. If for each n,

(36)
$$E(y_{n+1}|\mathfrak{F}_n) \leq y_n, \qquad s \leq n,$$

and if

(37)
$$\lim_{n} \inf_{\{t>n\}} \int_{\{t>n\}} y_n^- dP = 0,$$

then

(38)
$$E(y_t|\mathfrak{F}_n) \leq y_n, \qquad s = n, t \geq n.$$

PROOF. Let $V \in \mathfrak{F}_n$ and $U = V\{s = n, t \ge n\}$. Then

$$(39) \qquad \int_{U} y_{n} dP = \int_{V\{s=n, t=n\}} y_{n} dP + \int_{V\{s=n, t>n\}} y_{n} dP$$

$$\geq \int_{V\{s=n, t=n\}} y_{n} dP + \int_{V\{s=n, t>n\}} y_{n+1} dP$$

$$= \int_{V\{s=n, n \le t \le n+1\}} y_{t} dP + \int_{V\{s=n, t>n+1\}} y_{n+1} dP$$

$$\geq \cdots \geq \int_{V\{s=n, n \le t \le n+r\}} y_{t} dP + \int_{V\{s=n, t>n+r\}} y_{n+r} dP$$

$$\geq \int_{V\{s=n, n \le t \le n+r\}} y_{t} dP - \int_{\{t>n+r\}} y_{n+r} dP.$$

Therefore

(40)
$$\int_U y_n dP \geq \int_{V\{s=n, t \geq n\}} y_t dP - \liminf_n \int_{\{t>n\}} y_n^- dP = \int_U y_t dP,$$

which is equivalent to (38).

We can now state the main result of the present paper.

THEOREM 1. Let (y_n, \mathfrak{F}_n) be an integrable stochastic sequence in the monotone case and let s be the conservative sampling variable

(41) $s = \text{least positive integer } j \text{ such that } E(y_{j+1}|\mathfrak{F}_j) \leq y_j.$

Suppose that $E(y_s)$ exists and that

(42)
$$\liminf_{n} \int_{\{s>n\}} y_n^+ \, dP = 0.$$

If t is any sampling variable such that $E(y_t)$ exists and

(43)
$$\lim_{n} \inf_{\{t>n\}} \int_{\{t>n\}} y_n^- dP = 0,$$

then

(44)
$$E(y_s) \ge E(y_t).$$

PROOF. From lemmas 1, 2, and 3 and relations (5).

We shall now establish a lemma (see [2], p. 303) which provides sufficient conditions for (42) and (43).

LEMMA 4. Let (y_n, \mathfrak{F}_n) be a stochastic sequence such that $E(y_n^+) < \infty$ for each $n \geq 1$, and let s be any sampling variable. If there exists a nonnegative random variable u such that

(45) $E(su) < \infty$,

and if

(46)
$$E[(y_{n+1} - y_n)^+ | \mathfrak{F}_n] \leq u, \qquad s >$$

, then

(47)
$$E(y_s^+) < \infty, \qquad \lim_n \int_{\{s > n\}} y_n^+ dP = 0.$$

PROOF. Define

(48) $z_1 = y_1^+, \quad z_{n+1} = (y_{n+1} - y_n)^+ \text{ for } n \ge 1, \quad w_n = z_1 + \cdots + z_n.$ Then

$$(49) y_n^+ \leq w_n$$

(and hence $y_n^+ \leq w_s$ if $s \geq n$), and by (46)

(50)
$$E(z_{n+1}|\mathfrak{S}_n) \leq u, \qquad s > n.$$

n,

100 FOURTH BERKELEY SYMPOSIUM: CHOW AND ROBBINS Hence

(51)
$$E(y_{s}^{+}) \leq E(w_{s}) = \sum_{n=1}^{\infty} \int_{\{s=n\}} w_{n} dP = \sum_{n=1}^{\infty} \sum_{j=1}^{n} \int_{\{s=n\}} z_{j} dP$$
$$= \sum_{j=1}^{\infty} \sum_{n=j}^{\infty} \int_{\{s=n\}} z_{j} dP = \sum_{j=1}^{\infty} \int_{\{s>j-1\}} z_{j} dP$$
$$= E(y_{1}^{+}) + \sum_{j=2}^{\infty} \int_{\{s>j-1\}} E(z_{j}|\mathfrak{F}_{j-1}) dP$$
$$\leq E(y_{1}^{+}) + \sum_{j=2}^{\infty} \int_{\{s>j-1\}} u dP = E(y_{1}^{+}) + \sum_{j=2}^{\infty} \sum_{n=j}^{\infty} \int_{\{s=n\}} u dP$$
$$= E(y_{1}^{+}) + \sum_{n=2}^{\infty} \int_{\{s=n\}} (n-1)u dP = E(y_{1}^{+}) + E(su) - E(u)$$
$$\leq E(y_{1}^{+}) + E(su) < \infty,$$

and hence from (49)

(52)
$$\lim_{n} \int_{\{s>n\}} y_{n}^{+} dP \leq \lim_{n} \int_{\{s>n\}} w_{s} dP = 0.$$

REMARK. Lemma 4 remains valid if we replace a^+ by a^- or by |a| throughout.

4. Application to the sequential decision problem of section 2

Recalling the problem of section 2, let x, x_1, x_2, \cdots be independent and identically distributed random variables with $E(x^+) < \infty$, \mathfrak{F}_n the σ -algebra generated by $x_1, \cdots, x_n, g(n) \ge 0, f(n) = g(n + 1) - g(n) > 0$ and nondecreasing, $m_n = \max(x_1, \cdots, x_n)$, and $y_n = m_n - g(n)$. The constants α_n are defined by

(53)
$$E[(x - \alpha_n)^+] = f(n)$$

and are nonincreasing; we are in the monotone case, and the conservative sampling variable s is the first $j \ge 1$ such that $m_j \ge \alpha_j$; thus

(54)
$$\{s > n\} = \{m_n < \alpha_n\}.$$

We have shown in section 2 that

(55)
$$P\{s < \infty\} = 1, \qquad E(s^r) < \infty \quad for \quad r \ge 0.$$

We wish to apply theorem 1. As concerns s it will suffice to show that $E(y_s^+) < \infty$ and that

(56)
$$\lim_{n} \int_{\{s>n\}} y_{n}^{+} dP = 0,$$

which we shall do by using lemma 4. Let

$$Y_n = m_n^+ - g(n).$$

MARTINGALE SYSTEM THEOREM

Then

(58)
$$Y_n^+ = y_n^+, \quad E(Y_n^+) = E(y_n^+) \le E(x_1^+ + \cdots + x_n^+) = nE(x^+) < \infty,$$

and

(59)
$$E[(Y_{n+1} - Y_n)^+ | \mathfrak{F}_n] = E\{[m_{n+1}^+ - m_n^+ - f(n)]^+ | \mathfrak{F}_n\} \\ \leq E[(m_{n+1}^+ - m_n^+) | \mathfrak{F}_n] \leq E(x_{n+1}^+ | \mathfrak{F}_n) \\ = E(x^+) < \infty.$$

Hence by lemma 4, setting
$$u = E(x^+)$$
,

(60)
$$E(y_s^+) = E(Y_s^+) < \infty$$

and

(61)
$$\lim_{n} \int_{\{s>n\}} y_{n}^{+} dP = \lim_{n} \int_{\{s>n\}} Y_{n}^{+} dP = 0,$$

which were to be proved.

To establish the conditions on t of theorem 1 we assume that $Ex^- < \infty$; then since $y_n^- \leq x_1^- + g(n)$ it follows that $E(y_n^-) < \infty$. Define a random variable u by setting

(62)
$$u(\omega) = f(n)$$
 if $t(\omega) = n$.

Since

(63)
$$(y_{n+1} - y_n)^- \leq f(n)$$

and f(n) is nondecreasing, it follows that

(64)
$$E[(y_{n+1} - y_n)^- | \mathfrak{F}_n] \leq u \quad \text{if} \quad t \geq n.$$

We now assume that $f(n) \leq h(n)$, where h(n) is a polynomial of degree $r \geq 0$, and that $E(t^{r+1}) < \infty$. Then

(65)
$$E(tu) = \sum_{n=1}^{\infty} \int_{\{t=n\}} nf(n) \, dP \leq \sum_{n=1}^{\infty} nh(n)P\{t=n\}.$$

Since

(66)
$$E(t^{r+1}) = \sum_{n=1}^{\infty} n^{r+1} P\{t = n\} < \infty,$$

it follows that $E(tu) < \infty$. Then by the remark following lemma 4,

(67)
$$E(y_t^-) < \infty$$
 and $\lim_{n} \int_{\{t>n\}} y_n^- dP = 0,$

and all the conditions of theorem 1 are established. Thus we have proved

THEOREM 2. Suppose that $E|x| < \infty$ and that in addition to the conditions on g(n) in the first paragraph of this section we have $f(n) \leq h(n)$, where h(n) is a polynomial of degree $r \geq 0$. If t is any sampling variable for which $E(t^{r+1}) < \infty$ then $-\infty < E(y_t) \leq E(y_s) < \infty$, where s is the conservative sampling variable defined by (54).

If g(n) = nc then f(n) = c and we can take r = 0. Hence

COROLLARY 1. If $E|x| < \infty$ and $y_n = m_n - cn$, $0 < c < \infty$, then if t is any sampling variable for which $E(t) < \infty$, $E(y_t) \leq E(y_s) = \alpha$ [see (19)], where α is defined by $E(x - \alpha)^+ = c$ and s = the first $j \geq 1$ such that $x_j \geq \alpha$. Thus s is optimal in the class of all sampling variables with finite expectations.

To replace the condition $E(t^{r+1}) < \infty$ in theorem 2 and corollary 1 by conditions on y_t we require the following theorem which is of interest in itself. We omit the proof.

THEOREM 3. Let F(u) be a distribution function. Define $G(u) = \prod_{n=1}^{\infty} F(u+n)$. Then G(u) is a distribution function if and only if

(68)
$$\int_0^\infty u \, dF(u) < \infty$$

and for any integer $b \geq 1$,

(69)
$$\int_0^\infty u^b \, dG(u) < \infty$$

if and only if

(70)
$$\int_0^\infty u^{b+1} dF(u) < \infty.$$

COROLLARY 2. If $y_n = m_n - cn$, $0 < c < \infty$, and b is any integer ≥ 1 , then (71) $E(\sup_{n \ge 1} y_n^+)^b < \infty$

if and only if

$$(72) E(x^+)^{b+1} < \infty.$$

PROOF. We can assume c = 1. Define

(73)
$$G(u) = P\{\sup_{n \ge 1} y_n^+ \le u\}$$

Then for $u \geq 0$,

(74)
$$G(u) = P\{x_1 \le u+1, x_2 \le u+2, \cdots, x_n \le u+n, \cdots\}$$
$$= \prod_{n=1}^{\infty} F(u+n).$$

By theorem 3,

(75)
$$E(\sup_{n\geq 1}y_n^+)^b = \int_0^\infty u^b \, dG(u) < \infty$$

if and only if

(76)
$$\int_0^\infty u^{b+1} dF(u) = E(x^+)^{b+1} < \infty$$

THEOREM 4. Assume $E|x| < \infty$, $E(x^+)^2 < \infty$. If $y_n = m_n - g(n)$ where g(n) is a polynomial of degree $r \ge 1$ such that

(77)
$$g(1) > 0,$$

g(n + 1) - g(n) is positive and nondecreasing, then for any sampling variable t,(78) $E(y_t) \leq E(y_t),$

where s is the conservative sampling variable defined by (54).

PROOF. By theorem 2, if $E(t^r) < \infty$ then (78) holds. Hence we can assume that $E(t^r) = \infty$. Now

$$g(1) > 0, f(1) = g(2) - g(1) > 0,$$

$$g(2) \ge g(1) + f(1), g(3) - g(2) \ge f(1),$$

$$g(3) \ge g(1) + 2f(1),$$

(79) g

.

$$g(n) \ge g(1) + (n-1)f(1).$$

Let

(80)
$$a = \frac{1}{2} \min \left[g(1), f(1) \right] > 0.$$

Then by (79),

(81)
$$g(n) \ge an \text{ for } n \ge 1$$

Let

(82)
$$\tilde{y}_n = m_n - \frac{a}{2} n.$$

By corollary 2, $E(\tilde{y}_i^+) < \infty$. Then since

(83)
$$y_{t} = \tilde{y}_{t} + \frac{a}{2}t - g(t) \leq \tilde{y}_{t}^{+} - \frac{1}{2}g(t)$$

we have

(84)
$$E(y_t) \leq E(\tilde{y}_t^+) - \frac{1}{2} E[g(t)] = -\infty,$$

so that (78) holds in this case too.

REMARK. If in the case g(n) = cn we define $\overline{y}_n = x_n - cn$, then (85) $\overline{y}_n \leq y_n$, $\overline{y}_s = y_s$.

Hence for any sampling variable t,

(86)
$$E(\bar{y}_t) \leq E(y_t) \leq E(y_s) = E(\bar{y}_s),$$

so that s is also optimal for the stochastic sequence $(\overline{y}_n, \mathfrak{F}_n)$.

5. A result of Snell

As an application of lemmas 1 and 2, we are going to obtain Snell's result on sequential game theory [3].

LEMMA 5 (Snell). Let (y_n, \mathfrak{F}_n) be a stochastic sequence satisfying $y_n \geq u$ for

FOURTH BERKELEY SYMPOSIUM: CHOW AND ROBBINS

each n with $E|u| < \infty$. Then there exists a semimartingale (x_n, \mathfrak{F}_n) such that for every sampling variable t and every n,

(87)
$$E(x_t|\mathfrak{F}_n| \geq x_n \quad \text{if} \quad t \geq n, \qquad x_n \geq E(u|\mathfrak{F}_n),$$

(88)
$$x_n = \min [y_n, E(x_{n+1}|\mathfrak{F}_n)],$$

and

(89)
$$\liminf x_n = \liminf y_n.$$

We will assume the validity of this lemma, and prove the following theorem by applying lemmas 1 and 2.

THEOREM 5 (Snell). Let (y_n, \mathfrak{F}_n) and (x_n, \mathfrak{F}_n) satisfy the conditions of lemma 5. For $\epsilon \geq 0$ define s = j to be the first $j \geq 1$ such that $x_j \geq y_j - \epsilon$. If $\epsilon > 0$, then

$$(90) E'(y_s) \leq E'(y_t) + \epsilon$$

for every sampling variable t. If $\epsilon = 0$ and if $P\{s < \infty\} = 1$, then (90) still holds. PROOF. It is obvious that in both cases s is a sampling variable. We need to

verify that $P\{s < \infty\} = 1$. If $\epsilon > 0$, by (89) this is true.

Since (x_n, \mathfrak{F}_n) is a semimartingale,

(91)
$$E(x_{n+1}|\mathfrak{F}_n) \geq x_n.$$

By (88) and the definition of s,

(92)
$$E(x_{n+1}|\mathfrak{F}_n) = x_n \text{ for } s > n.$$

Since $-x_n \leq E(-u|\mathfrak{F}_n)$ and $E|u| < \infty$, by lemma 2 and (92), we have

(93)
$$E(x_s|\mathfrak{F}_n) \leq x_n \text{ for } s > n$$

By (87), (93), and lemma 1, we obtain $E(x_s) \leq E(x_t)$, and therefore, by definition of s,

(94)
$$E(y_{\epsilon}) \leq E(x_{\epsilon}) + \epsilon \leq E(x_{t}) + \epsilon \leq E(y_{t}) + \epsilon.$$

Thus the proof is complete.

J. MacQueen and R. G. Miller, Jr., in a recent paper [1], treat the problem of section 2 by completely different methods. Reference should also be made to a paper by C. Derman and J. Sacks [4], in which the formulation and results are very similar to those of the present paper.

REFERENCES

- J. MACQUEEN and R. G. MILLER, JR., "Optimal persistence policies," J. Operations Res. Soc. America, Vol. 8 (1960), pp. 362–380.
- [2] J. L. DOOB, Stochastic Processes, New York, Wiley, 1953.
- [3] J. L. SNELL, "Application of martingale system theorems," Trans. Amer. Math. Soc., Vol. 73 (1952), pp. 293-312.
- [4] C. DERMAN and J. SACKS, "Replacement of periodically inspected equipment (an optimal optional stopping rule)," to appear in Naval Res. Logist. Quart., Vol. 7 (1960).