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1. Introduction
1.1. The subject of this paper is twofold: a special problem and a general theory. The

reader may wonder why the general theory is not stated in part 2 and then applied to the
special problem. The answer is that the general theory appeared as a necessary generali-
zation of theorems stated in part 2, after the two first parts had been written, and the
author thought that he would not have enough time before this Symposium to reorgan-
ize the paper. Moreover, part 2 will be a good introduction to the general theory. In the
introduction the author will begin with the general theory, and the reader who wishes to
do so may begin with part 3.

1.2. The problem considered in this theory is to find an explicit representation of a
Gaussian r.f.1 of a real variable t that may be considered as the canonical form of this func-
tion. By subtraction of a known function, it may be reduced to a Gaussian r.f. +(t) with
identically zero expectation. Such a r.f. is generally defined by its covariance r(ti, 12), or
by a stochastic differential equation with a Cauchy condition. None of these methods
gives an explicit representation of (t).

In his previous papers [5] and [6], the author has considered the relation between these
two classical methods, and solved the problem of deducing one of these representations
from the other. He has also called attention to an explicit representation, which may be
written in the form

(1.2.1) (t) =f F(t, u) {,,Vdu,
0

where the r.v. {= are independent reduced Gaussian r.v. Here {,A/Tu may be replaced by
dX(u), where X(u) is the Wiener r.f. (see, for instance, formula (3.2.15) in [6]). We shall
call 1i + ort the canonicalform of a Gaussian X, where t is a reduced Gaussian r.v., A is
the expectation of X, and o is its standard deviation. This leads naturally to the follow-
ing definition: if the conditional canonical form of O(t') is u(t' It) + {a(t' jt) when +(u)
is given in (0, t) (with 0 < I < t'), then formula (1.2.1) gives the canonicalform of
+() if

(1.2.2) JA (t't) = F (t', u) t oVdu .

This paper was supported (in part) by funds provided under Contract AF-18(600)-958 with the Air
Research and Development Command.

1 We shall use the following abbreviations: r.v., random variable (or variables); r.f., random function
(or functions); a.s., almost sure (or surely).
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Hence

(1.2.3) to(t'It) = F(t', u) ,ou2(t'It) = | F2(t', u)du.

The kernel F(t, u) will be called the canonical kernel of 4)(t), and, roughly speaking, the
theory may be summarized by the following existence and uniqueness theorem: every
Gaussian r.f. +(t) with identically zero expectation may be represented in the form (1.2.1);
there exists only one canonical representation, and, in exceptional cases, +(t) has representa-
tions of the form (1.2.1) that are not canonical.2

1.3. Now, to give a precise statement of this theorem, a few restrictions are necessary.
For the existence theorem, the Schwartz theory of distributions has to be introduced, and
further it is necessary to assume that, for every fixed t, P(t, u) is the Schwartz deriva-
tive of a nondecreasing function of u. Under these conditions every Gaussian r.f. with
identically zero expectation and satisfying a minor restrictive continuity condition may
be represented by formula (1.2.1).

In section 4.5 the author will explain, as well as he is able, the nature of this condi-
tion. It is his considered opinion that it is not possible to give a simple necessary and
sufficient condition. The reader will not be surprised by this fact if he recalls, for in-
stance, that the absolute convergence of a complex Fourier series does not correspond
to a simple property of the represented function.

As for the uniqueness theorem, let us notice that all the functions F(t, u) = e(u)Fi(t, u),
with the same F1(t, u) and e(u) = ± 1, are possible kernels for the same r.f. Let us call
the class of these functions the class of equivalent kernels. The uniqueness theorem is then
true, not for the functions F(t, u), but for the classes of equivalent kernels, and, hence,
to a well-defined +0(t) corresponds only one canonical class.

The reader may be surprised by the third part of the fundamental theorem. For this
reason, the author thought that a theory of Gaussian sequences, which is summarized
in section 4.1, would be a good introduction to the theory of Gaussian r.f. For sequences,
the existence of representations that are not canonical seems quite natural, and it is
easy to recognize whether a given sequence has such representations and to determine
the canonical one. Returning to a Gaussian r.f. of t, one may expect that a representation
of form (1.2.1) need not be canonical. The problem arises as to how to recognize whether
a given kernel is canonical; this problem is easily reduced to a Volterra equation. In the
regular case, this equation has only one solution and the kernel is canonical. On the con-
trary, in the singular case, the problem may be difficult. It was solved in [11] in a very
special case only, and, in this paper, theorem 4.8 gives for the Goursat kernels only a
necessary condition that is not sufficient.

1.4. The theory that we have summarized may be applied to many classical problems.
For instance, to determine whether or not +(t) is a stationary r.f., it is necessary to as-
sume that the process begins at time - o instead of 0, and to replace 0 in formula (1.2.1)
by - -. Then the necessary and sufficient condition for the stationary character is that the
canonical kernel has the form e(u)f(t - u), with e = + 1.

In sections 4.6-4.8, the necessary and sufficient conditions for the existence of the
derivatives, and also for the Markovian character of given order, in the wide sense and
in the restricted sense (see definitions in section 4.8) are given. In this summary, we only

' Attention was directed in footnote 17 in [61 to the importance of condition (1.2.2). However, formula
(3.2.15) in [61 and the present formula (1.2.1) are not exactly the same. In (3.2.15), the kernel is always
canonical, and the author did not know that other kernels can exist.
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mention the condition for the case of wide sense Markovian character: the condition is
that the canonical kernel be a Goursat kernel of the same order; then, if other kernels
exist, they have the same or larger order. Examples of these two cases are T2(t) and
M6(t) of section 3.6.

Another problem is to find the relations between F(t, u) and the other definitions of
+O(t). The covariance is obviously

(1.4.1 ) r (t1, t2) =f, F (tl u) F (t2, u) du, t= min (tl, t2),

and in order to deduce F(t, u) from r(tl, t2) it is necessary to solve an integral equation
of degree 2. However, in a very general case that has been considered in [5] and [6], if
F(t, u) is the canonical kernel, the problem is easier. This case is the one when a2(t+ di It)
has the form a2(t)dt, with a(t) 'd 0. Then it is possible to deduce a stochastic differential
equation from r(t1, t2), and to determine F(t, u) by integrating this equation.3 Aside from
obtaining o(t) = F(t, t) from a2(t), which is given by

(1.4.2) 0.2(t) =lim [rF(t,t) +r(t+r,t+T)-2r(t,t+r)],

one has only to solve linear integral equations with kernels depending on r(tl, 12).
1.5. Let us consider now the special problem concerning the Brownian motion depend-

ing on a point A of the Euclidean space En or of the Hilbert space E.. The Brownian
function X(A), the existence of which was proved in [2], is the Gaussian r.f. defined, up
to an additive constant, by the formula

(1.5.1) X(A)-X(B) = Vr(A,B),

where t is a reduced Gaussian r.v., and r is the distance between A and B. We shall let
Mft(t) denote the average of X(A) on the sphere Q, with center 0 and radius t, and
M.(t) = Mn(t) - X(O). Whenever no confusion is possible, Mn(t) and Mn(t) will be
replaced by M(t) and M(t).

Roughly speaking, the problem is to consider the determinism of X(A). When X(A)
is given either on Qg, or in the whole region r(O, A) > t, then X(O) has a conditional
standard deviation, which, for finite n, is a = k,>\t in the first case, and CJn = kn5ti in
the second case. Since the standard deviation is a nonincreasing function of the informa-
tion, it follows that kn _ kn (and even kn < k,) and that kn and k, are decreasing func-
tions of n. Consequently they tend to limits k. and k.. It is easy to find k", which is
positive. However, it is much more difficult to find ke, and this paper is the result of
research that was first undertaken to solve this problem. The answer is k., = 0. Hence,
in E,, X(A) has a deterministic character. This function may be known at 0 even if
nothing is assumed concerning its values in a neighborhood of 0.

In the first problem, where X(A) is given on (it, the conditional expectation of X(O)
is Mn(t). In the second problem it is necessarily a linear function of the values of M*(u)
in (t, co). Hence, we are led to consider the r.f. Mn(t). In the first part its covariance
rF(tl, t2) is found when n = 2p + 1. The case n = 2p, in which rn depends on an elliptic
integral, is more difficult. In this case, Mn(t) has no Markovian character. However, it
is not necessary to know what happens for even n; knowledge of the character of M2p+1(t)
enables us to pass to the limit and find the character of M.,(t).

In part 2, the canonical form of M2p+1(t) is given. If p > 1, this function has another
' See, for instance, part (4) of section 3.5 and section 3.2 of [6].
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representation of form (1.2.1). More exactly, this representation is given for M5(t) and
M7(t), and it seems likely that it exists for every p > 1. M2p+1(t) is a Markovian r.f. of
order p + 1, in the restricted sense. Hence, its canonical kernel is a Goursat kernel of
order p + 1; the other kernel (at least if p = 2 or 3) is of order p + 2.
At the end of part 2 and in part 4, the problem of the continuation of M2,f+(t) is con-

sidered. The continuation to the right is immediately given by the canonical representa-
tion. It results from the Markovian character of this function that it may be defined as
the solution of a stochastic differential equation of order p + 1, and that the problem is
exactly the same as if only the Cauchy conditions [M2p+1(t) and its p derivatives] were
given at a point t. The continuation to the left is not so simple. However, by application
of the Legendre polynomials, it is possible to find k2,+1 and to prove that k<. = 0.
A more precise result is also proved. The r.f. M.,(t) is a.s. analytic. If t = rei0, it is

regular for 01 < 7r/6 (and r > 0), and all the points of the lines 0 = ± r/6 are singu-
lar points.

The last part contains remarks and theorems concerning what may be termed the
Markovian character of X(A) (in a slightly modified sense). In section 6.1, we consider
the following problem: in the space E2p+1, has X(A) a Markovian character of order
p + 1? The answer seems to be yes, but even if the considered surface is a sphere, the
author is unable to prove it. In the other sections, the case of the Hilbert space is con-
sidered. Since another paper [12] on the same subject was presented by the author at
the I.M.S. meeting, some preliminary results are summarized without proof. The first
of the important results, which is an immediate consequence of the properties of M,(t),
is that if X(A) is given in a neighborhood of a sphere Q of the Hilbert space, then X(A)
is known in the inside of Q, and its average is known on every sphere with center inside
of D.

This result may be extended to every closed surface in the Hilbert space. Other re-
sults about open surfaces or curves are also stated. These problems are connected with
theorems on the Hilbert space given by the author in his book [3], and these theorems
lead to very curious consequences. Let us give here only one of these consequences: let V
denote a volume, S its boundary, and C a curve that divides S into two surfaces. It may
happen, for suitable curves C, that, if X(A) is given in an arbitrarily small neighborhood
of C, then it is known in the whole volume V.

2. The covariance FJ(tG, t2)
2.1. In this part, we shall suppose X(O) = 0. Hence M(t) = M(t) is the average

M t[X(A)] of X(A) on the sphere Di, with center 0 and radius t. If tl, t2 and r are re-
spectively the distances OA, OB and AB, one has
(2.1.1) El{X(A)X(B) I =iE{X2(A) +X2(B)-[X(A) -X(B)]2)

=I(tl+t2- r

and the covariance rP(ti, t2) of M(t) is
(2.1.2) R(tl, t2) = fJE[X(A)X(B)] Af=Af Af,,

(h+t2 P.)I pn=pAf(r) =Af (r).

2.2. Let us first calculate rJ7(t, t). If t1 = t2 = t, if 0 is the angle AOB, and if we set

(2.2.1)
1,
= f'sinhOd0, Jh = f sin,O sin 0 d0,
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we have
(2.2.2) r =2t sin2 P= I

The value of I'n-2 is

(2.2.3) I.2I=IB ( 2 1 )= (2 ) = -r(7Y)
2r() 2 2(

where B and r are the Eulerian functions. By the same method, we obtain

(2.2.4) Jn-2 2-2 Sin-l 2 cos"-2 2 dO = 2'-If / sins-' a cosg-2 a d af0r 2 2

= 21-2 B 2 =
2

2 (r (n

Hence

2n-1 I2
(2.2.5) Pn ,gr(r )tn
and
(2.2.6) limP.= tV2.

This formula (2.2.6) was almost obvious. As N , the value of r for 0 = 7r/2 becomes
dominant in the calculation of the average Pn, the total weight of the other values tend-
ing to 0.

Finally, we deduce from (2.1.1)

2n-2 0!k)
(2.2.7) rn(t, t) = It- -7r( -it

(2.2.8) imrn (t, t)

2.3. If 41 5 12, the first formula of (2.2.2) must be replaced by
(2.3.1) r2=t1+ 2I1t2 cos, r>O.

Let us notice at once that, as n a>,the value of r for 0 = 7r/2 is again dominant,
and we get
(2.3.2) lim r (t1, t2) =i(t1+2- t2)-

This is, for every positive 1 and t2, an analytic function, and it follows from a well-known
theorem of Loeve that, if n = O (case of the Hilbert space), M(t) is infinitely differen-
tiable. In this case
(2.3.3) e-M( e2u)

has the covariance

(2.3.4) cosh u | 2u u = ul-U2

Hence it is a stationary Gaussian random function and is infinitely differentiable.
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Since r(tl, t2) = min (tl, t2) has discontinuous derivatives (along the line tl = 12),
and Mi(t) = X(t)/l/2 where X(t) is the Wiener r.f., we may foresee that rP(tl, 12) and
also, a.s., M"(t) both have a finite number of continuous derivatives, and this number
increases indefinitely with n. This property will be proved in section 2.4 for rP, and in
part 3 for M".

2.4. Let us consider a surface Q in E". We shall set

(2.4.1) U(A) = f rdQ ,

where r is the distance between A and a point B that runs over the surface Q2, and dQ is
the element of area. The distance between A and Q will be designated by 6. Obviously,
U(A) is an analytic function and Q is the locus of its singular points.
THEOREm 2.4. If A crosses Q at a regular point,4 U(A) and its derivatives of orders <n

are continuous. The nth normal derivative is discontinuous if n = 2p + 1; the derivatives
of order n of

(2.4.2) U(A)-(-1)P CnA2n

(where wn is the area of a sphere with radius 1) are continuous.
PROOF. It is known that

(2.4.3) Ar-= a (n+ a- 2) ra-2

(A is the Laplacian operator). If n = 2p + 1, it follows that

(2.4.4) Ar= (-1)P-1 (2p)! _= (-1)vP1 (n-i)
(2p-1) r2P-1 (n- 2) rn2

and

(2.4.5) APU(A)=(- 1)P-1 (:-*f dQ2

The integral is a Newtonian potential. It is continuous, and the sum

(2.4.6) A dg + (n-2) Zi

has continuous derivatives of the first order. Thus the differences

(2.4.7) AVPU(A)-(-1)P (n 1)! 'On a

(2.4.8) d2p U (A) (-1 )P(n-1)_n6

d/dv being a normal derivative, also have continuous derivatives of the first order, and
the difference (2.4.2) has, at every regular point of Q, continuous derivatives of order n.

Q.E.D.
Let us now apply the result to the sphere 0,,. We have

(2.4.9) 1n I U(A), In(tl, t2) = '2 (tl+t2-Pn)

4 A point is here considered as regular if, in a neighborhood of this point, the tangent plan is well de-
fined and varies continuously.
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Hence,
FIRST CONTINUITY THEOREM. If n = 2p + 1, the differences

(2.4.10) pn- (- 1)- r', (t,, t2)-(t-1)'-14 lT12nP, 4ntpiq'
are continuous and have continuous derivatives (even if ti = t2 > 0) of all orders < n (and
of all orders if t1 and t2 are different and positive).

If n = 2p, the nth normal derivative of rF(t1, t2) has a logarithmic discontinuity.
Since we shall not use this theorem, we do not need to prove it.

2.5. To obtain the exact value of p,n, B being again the angle AOB, we have to start
from the formulas

(2.5.1) r2 = t2+ t22-2t112 cosO ,

(2.5.2) 2In-2p.= J r sinn-2OdO.

Considering cos 0 as parameter in the integral, we see at once that, if n = 2p, the right
side is an elliptic integral which reduces to an elementary integral only if ti = t2; if
n = 2p + 1, it is an elementary integral. For this reason, we shall only consider the
second case, in which we shall obtain simple expressions for r1(tl, t2) and M(t). There-
fore, we shall always suppose

(2.5.3) n=2P+1.
Instead of cos 0, it is preferable to choose r as parameter. Since it varies from |1t2 - |

to tl + t2, we shall set

(2.5.4) t= min (t1, t2), t' = max (t1, t2).

Then
(2.5.5) t _ t', r (t1, t2) = r (t, t')

and the formula (2.5.2) becomes

(2.5.6) In-2Pn = (211')I-2 f [t2t'2 - (t2+ 1'2 - r2) 2] P-1r2dr

Obviously, this integral is a homogeneous polynomial in t and t', of degree 4p - 1, and
is an odd function of t. This enables us to write

(2.5.7) Pn
p (t12 1t2)

where Pn* is a homogeneous polynomial of degree n - 2. Further, pn, which is a weighted
average of r, is a number in the interval (t' - 1, ' + t), and, for indefinitely increasing t',
Pn = t' + 0(t). Hence we have

t2 P t,t2(2.5.8) P. (t2, t n)

where P,,(. ) is a homogeneous polynomial of degree p - 1, that is,
(2.5.9) P,, (12, t'2) = alt'2P-2+ a2 t21'2p-4+ * * *+ ap t2p-2
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Thus

(2.5.10) r(tl t2)= a 2--

2.6. To find the numbers ah, we shall use the same transformation as in 2.3. The co-
variance of the r.f. e-M(e2u) is here

(2.6.1) -Y. (u) = i C-lule ahe-(4h-)u Ul= -U2

and, by the continuity theorem, zy*(u) and its n - 1 first derivatives are continuous.
This happens if and only if the derivatives of odd orders 1, 3, 5,-, 2p - 1 vanish for
u = 0. Setting

(2.6.2) ah'= (4h -1) ah

we have

(2.6.3) 2[ Iz^(- =- + , (4h-1) a',

and we obtain the equations
p

(2.6.4) (4h- 1) 2.,'a= I1, v'=0, 1, 2,* *,p-1,h=l~~~~~h-i

which define al', * a'.
Their determinant is the Vandermonde determinant

(2.6.5) 11 (4h-1) 2v'Il = 17 [(4h-1)2-(4k-1)2] = 178(k-h)(2h+2k-1),
h, k h, k

h= 1, 2,*, p; k=h+1, h+2,* , p.

It is $60, and the system (2.6.3) has one and only one solution.
Each ah is the ratio of two Vandermonde determinants, and, to find its value, it is

sufficient to write the factors which are not the same in both. Therefore, we have

(2.6.6) ah= I (2kh-i1)

)h 41 k- k(2h)(2k-1F)-

(the values of k are here 1, 2, - 1, h + 1, h + 2, , p), and-y^(u) and r1,(tl, t2)
are given by (2.6.1) and (2.5.10). As we have h- 1 negative differences k - h, the
sign of ah is (-1)h-1.

The reader may notice that, for any fixed n = 2p + 1, we have two easy verifications.
From (2.2.7) we deduce

(2.6.8) ~~12-2 r2 (p+I rF(t, t)(2.6.8) 1 -

r r (2p +i) t ah

and, from the deepest part of the continuity theorem (which was not used yet), that is,
from the continuity of the nth derivative of the difference (2.4.2), we may deduce the
value of the right side of (2.6.2) for v = 2p.
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2.7. Particular values of n. One has

(2.7.1) r1 (t1, t2) =

(2.7.2) r3 (ti, t2) = -

t2 12 '

(2.7.3) r6 (tl, t2) 2 5t+70t3

(2.7.4) r7 (tl, t2) t 31t + 42 - 6 '
t2 21T4t42

-

2t 18

(2.7.5) r (t1, t2) t _ 2t2+ 34 _ 2t1 + ts

The first of these formulas is obvious. The values of r3 and rr may be easily deduced
from the formula (2.5.6), without using the continuity theorem; the author found them
first by this elementary method. But, as p increases, the computation becomes more and
more complicated, and it is easier to deduce r7 and r9 from the general formulas (2.5.10)
and (2.6.7).

3. Analytic expressions of M(t)
3.1. Considering only the case n = 2p + 1, where rP(t1, 12) is a Goursat kernel, we

shall obtain for M^(t) analytic expressions of the form

(3.1.1) +(t = F(t, u) tu 1i, t>0,

where the variables {u are independent reduced Gaussian random variables. Then, if
X(t) is the ordinary Brownian (or Bachelier-Wiener) function, if X(0) = 0, and if
F(t, u) is continuous and differentiable in u,

(3.1.2) +(t = F/;(t,u)dX(u) = X(t) F(t, t) _ aF (t u) x(u) du,

and d>(t) may be defined by an ordinary Riemann integral. It may also be defined as the
Gaussian r.f. having expectation zero and covariance

(3.1.3) r (ti, 12) =f F (t, u) F (t', u) du,

where I and 1' are defined by formulas (2.5.4).
We shall present in the next part a general theory of the functions </(t). In this part

we need only three simple lemmas.
3.2. LEMMA 1. If F(t, u) is a homogeneousfunction of degree a, then r(tl, 12) is a homoge-

neousfunction of degree 2a + 1, and t-'-1/24(t) is a stationary r.f. of log 1.
LEMMA 2. If

(3.2.1) F (t, u) = fh (1) 'ph (u),
0
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then

(3.2.2) r (t1, t2) = I fh (t) gh, (t), gh (t) =f F (t, u) ph (u) du.
0

These lemmas are both obvious consequences of formula (3.1.3). Let us now consider
the integral
(3.2.3) r* (tl,I2) = J F (t, u) F (t', u) du

as a continuation of r(t1, t2) when the sign of the difference t - t2 changes. The dif-
ference

(3.2.4) -y(tl,t2) = [r (t, t2) -r* (t1,t2) F=-JF(t, u) F (t', u) du

will be considered as the singular part of r(t1, t2) for small values of 12 - t1.
LEMMA 3. Ifn = 2p + l and

(3.2.5) F (t, u) = (t-u)Pf (t) +0 [(t-u) P], u-,

where f(t) is a continuous function of t, then

(3-2-6) Sy (t,, t2) = -)P-1 (PI)! f (t) f (t') (t'-t) n+ o [ (tl t) n], t'-t.-+2n!

This is an immediate consequence of formulas (3.2.4) and

(3.2.7) (u-t)p(t- u)Pdu= (t'-t)"B (p+ , p+ 1) - (p!) (t'-t) 2,+1

When p and n are not integers, the lemma holds if p! and n! are replaced by r(p + 1)
and r(n+ 1).

In other words, if p is an integer, lemma 3 may be stated as follows: if F(t, u) has
continuous derivatives of orders 5 p, in a neighborhood of every point t = u > 0, and if
(3.2.5) holds, then the difference
(3.2.8) r (t1, 12)-( l p-i (p)! f (tl) f (t2) 2tl-t2 n

2n!ft)ft) t-t1

is continuous and has continuous derivatives up to order n.
As a particular case: if P(u) is a polynomial or an analytic function, if

(3.2.9) P2 (u) = (2p) ! (1 -u) 2P+ o[ (1-u) 2p],

and if F(t, u) = P(u/t), then r(ti, 12) has the property that is given for r1(tl, t2) by the first
continuity theorem.

3.3. The first analytic expression of M(t). If

(3.3.1) F (t, u) =P (t=bo+ bh (t)
I

it follows from lemma 2 that r(t, 12) has the form

(3.3.2) r1(1,12) = go (t) + t?2h-1
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and from lemma 1 that r(ti, 12) is a homogeneous function of degree 1. Hence it has the
form

1 ph

(3.3.3) aO2- ah t'2h-I

obtained for rP(tl, 12) [see formula (2.5.10)].
Since the continuity theorem that was proved in 2.5 is sufficient to define ao, a,,

a,,5 we see that if P(u) fulfills the condition (3.2.9), then r(l, t2) = rP(th, t2), and 0(t) is
an expression of M(t), in the case n = 2p + 1.
We have now only to calculate the polynomial P(u) that fulfills both conditions (3.2.9)

and (3.3.1). Obviously it is
1u

(3.3.4) P (u) = c,f (1 -X2) P-'dx = c, [I2p_1-fj (1 -x2) P-ldx],
where
(3.3.5) I2p-1= f (1-x2) -'dx= f sin2-'I Odfo 0

is the same integral as in formula (2.2.3), and

(3.3.6) lim _P(u) c2'2 (2p)
1U) 2' p2 2 (P!) 2

Hence

33cp= 2 (2 p)! _2p2 1*3*5* * (2p-1)

4p2I
=r

Therefore, the constant term in P(u) is given by

(3.3.8) bo==cI2p_=P- I2p-1I2p= P12P-1

Since tu may be replaced in formula (3.1.1) by -{, the sign of cp (or of bo = cI2,.i) is
not essential, and we have proved
THEoREm 3.3. If n = 2p + 1, and if P(u) is the polynomial defined by (3.3.4) and

(3.3.7), then M(t) may be represented by the formula

(3.3.9)~ ' (U) v-

3.4. Particular cases. If n = 1 (p = 0), one has obviously

(3.4.1) Ml (t) fi .|du = X (t)

If n = 3 (p = 1),
(3.4.2) M. (t) =fi: -( )u tu =t.| X (u) du.

6 In section 2.6, ao was known, and we used only p among the p + 1 equations given by the con-
tinuity theorem; these equations define here r(t1, 12) up to a constant factor. This factor is now defined by
the last equation.
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If n = 5 (p = 2),
ftIi,U VllU lt(2 i

(3.t4.t3) M6 (t) = --t 1- 3 t+3t u .

If n = 7 (p = 3),
(3.4.4) M7 (t) t)] d

y(5 4 t 32P-20 t-) O

3.5. The derivatives of M(t) and the second continuity theorem. If F(t, u) in formula
(3.1.1) is a continuous function of t and u, and is differentiable in t, and if di > 0, then

(3.5.1) 54 (t) =F(t,t) d-/+dtI aF(t,u) uV ,

and +(t) is a.s. differentiable if and only if F(t, t) = 0. Its derivative is

(3.5.2) f'(t) = f F1 (t, u) tuV( , F1 (t, u) = IF (t, u)ait

If F1(t, t) = 0, then +'(t) is also differentiable, and so on.
If one applies this remark to M(t), one sees that M(t) has a.s. p continuous derivatives.

The first derivative is
(3.5.3) Mt'(t) = c,i dUu) 2t

the pth derivative is
(3.5.4) M(P) (t) = Cdu,a2l[t(1-t-)]
and this function is not differentiable. Applying again formula (3.5.1) to M(P)(t), one has

(3.5.5) AM(P) (t) = cpt - ddt+ dtif FP+1 (t, u) (. i/du

where
(3.5.6) c 2-1 (p-1)! c,

(3.5.7) FV+1 (t, u) - ad (p, ) cpa'P[t2 2(1 )
The first term in the right side of (3.5.5) may be called the singular part of aM(')(t).

In the same sense, the singular part of 6M(t) is

(3.5.8) cP fT.(, u =p('
where T = dt and ,t is a reduced Gaussian variable.
Thus we have proved the following theorem.
SECOND CONTINUITY THEOREM. M(t) is a.s. continuous and has continuous derivatives

of orders 1, 2, p. The pth derivative M(P)(t) is not differentiable. One has

(3.5.9) .M (t)(= cpt-P Vd+O (dt)

(3.5.10) 8M (t) , M(h) (t) (d= h 4 (dt) p+1f2
(3.5.10) M (d)h! + !-/n t , d)P'
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Formula (3.5.5) gives a more precise result for M(X)(t). We shall consider in section 3.8
and in part 4 the analogous formulas M(t) and the other derivatives of this function.
In all these formulas, dt is always positive.

3.6. Thefunctions 4,(t) and I,(t). Special reference to the case n = 5. We shall consider
here, not the general function +(t) defined by (3.1.1), but the special functions

(3.6.1) -(t) =t2v-1M(t), %,(t) = dt (t)

The covariance of these functions are

t-r-rt
,

82p [ 2t2 2r (tl, t2)(3.6.2) 1t2trr(t2 , t2) and a[tlPt( t

They are polynomials in t and t', and the second is the simpler. If n = 3 (p = 1), the
covariance of '1(t) is t, and one deduces that *1(t) is the Brownian function X(t). Then

(3.6.3) tM(t) =|X(u)du= fo u) . ,

and we find again the result given in 3.4.
As p increases, the calculation becomes more and more complicated, and the method

used in 3.3 is better. However, this second method gives a result that was not given by
the first method. To show it, it is sufficient to consider the case n = 5 (p = 2). It was
fully discussed in a previous paper, that was presented to the recent Symposium on
Mathematical Probability in Brooklyn (April, 1955). We shall briefly summarize it.

If n = 5, the covariance I2(t) is
(3.6.4) 36t2t' - 8t,
and this leads us to consider the more general Gaussian function

(3.6.5) f(t (It+,u) t..
It has the covariance

(3.6.6) at2t'+ #0 , a = X2+XIA 1A+
2

2' 2 3'
and it follows that, independently of the trivial remark that X and IA may be replaced
by - X and -,u, the covariance (3.6.4) is obtained for the two functions

(3.6.7) 4,2, 1 (t) = 2f,; (2t- u) tu ,,dU, T2, 2 (t) = 2;(f - 3t+ 4u) tu-N,d.

Thus, one has two different analytic expressions of the same random function. Coming
back to M(t), one has for M5(t) (the subscript is here the value of n) the two expressions

(3.6.8) M6,1 (t) = , [(--t-- (--td] u

(3.6.9) M5,2(t) f [(1--t)2(I u
ut.V W

f , . .§.U2
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The first formula is the same as in section 3.4. However, M5, 2(t) is a new expression of
Mr(t). We call special attention to the fact that in this expression the integral has a
term in u2/t2 that does not exist in M,, i(t).
By a quite analogous method, one finds for M7(t) an expression M7, l(t) that is the

same as in section 3.4, and another expression

(3.6.10) M7, 2 (t) =f [(1 - u) _ 3 + 2 (1--t) I {% /IOdu

22t 4t+ to- t-)u/0uf~t 1 3 u -us 9u4 3 u5

with a term in u4/t4 that does not exist in M7, 1(t).
In the general case, the algebraic equations that define the unknown coefficients in

(3.6.11) T, (t) = f ( Pt-1 + Xltp-2u+.*. + X,_,up-1) {,/ud

seem to have 2P solutions. Since nothing essential is changed if all the Xh are replaced
by - Xh, one has at most 2-1 distinct solutions. However, if p = 3, one finds only two
real and distinct solutions, instead of 22 = 4. This circumstance seems to be general.
However, this is not proved, and in any case the general formulas for the second two
expressions %p, 2(t) and M2p+l, 2(t) are not as simple as those obtained above for the
first two expressions of 'ip(t) and M2p+1(t).

3.7. Special properties of M6, l(t) and M5, 2(t). One deduces from the definition (3.6.5)
of T(t)
(3.7.1) ST (t) = stbX (t) + XX (t) dt, s =X+ , X (t) = f,tsvdu.
Obviously, if X(u) is given in (0, t), I(t) is known; it may be deduced from formula
(3.6.5), or from (3.7.1) with the Cauchy condition 'I(0) = 0. To see whether the converse
statement is true, let us set X = ks, and write (3.7.1) in the form6

(3.7.2) sa [tkX (t) ] = tk-i1 , (t) .

It shows that, if a solution X*(t) of the equation (3.7.1) is known, the general solution is

(3.7.3) X (t) = X* (t) + ct k,

and we have to look whether we have a Cauchy condition to define c.
If k > - 1/2, then -k < 1/2, and the a.s. condition

(3.7.4) X (t) =O (t-k), tJ,

is fulfilled only for one value of c. If k = - 1/2, c may be deduced from a Cauchy condi-
tion in a generalized sense. On the contrary, if 2k + 1 < 0, and if X*(t) is a possible
function X(t), all functions given by formula (3.7.3) are possible functions X(t). Then
we have no reason to say that one of these functions is the right X(t), and c is a Gaus-
sian random variable with positive standard deviation a. In his previous paper the au-
thor has proved that

(3.7.5) a2
I 2+2kk

6 Here, we suppose s = 0; if s = 0, I(t) is a.s. differentiable, and X(t) is its derivative.



GAUSSIAN RANDOM FUNCTIONS I47

One has exactly opposite results if I(u) is given in (t, co). Then X(u) is known in
(t, o ) if k 9 - 1/2, and depends on an unknown variable c, which is a Gaussian variable,
if k > - 1/2. Let us notice that, if X(u) is given in (t, co), 'i(t) is not known in this
interval but depends on the unknown constant

(3.7.6) ftu tViu.

Let us now apply these results to the function M5(t). Obviously, if M5(u) is given in
(0, t), then the corresponding function 'I'2(t) is known, and, since it has two expressions
of the form (3.6.5), with the same s = X + j, = V12, and two different values of k,

(3.7.7) k =2> - k2= -3<-

it corresponds to two different Brownian functions X1(t) and X2(t). One deduces from
(3.7.1)
(3.7.8) 6fig'1(2) = t5X1 (t) + k1Xi (t) dt = t8X2 (t) + k2X2 (t) dt,

and the property of I(t) that was proved above gives the following theorem.
THEOREM 3.7. If M5(u) is given in (0, t), then *2(u) is known in the same interval, and

the function Xl(u) that is connected with the first expression M5, l(t) of M5(t) is known;
however, X2(u) depends on an unknown constant, and if X2(U) is given in (0, t), one has
more information than if Xl(u) is given.
On the contrary, if Xl(u) is given in (t, on), one has more information than if X2(u) is

given.
3.8. Markovian systems and stochastic differential equations. Obviously, with the excep-

tion of the trivial cases k = 0 and k = 1, I(t) is not a Markovian function, but X(t)
and I(t) are together a Markovian system, and this is true for I2, 1(t) and X1(t) as
well as for N2, 2(t) and X2(t).

Let us consider first the system

(3.8.1) XI t " 2()=(t) ()=2fw (2t -u) t.VM,

which is equivalent to the stochastic differential equations

(3.8.2) 5X1 (t) = tt -Vdt, I2 (t) = 2V3 VtV + 4V\/3 X1 (t) dt, dt>0,
with the Cauchy conditions X1(0) = 42(0) = 0. Since *2(t) = 2'(t), one deduces from
(3.7.2), where k = 2, s = 2A/3,
(3.8.3) 2 X t2X, (t) =f ud'2 (u) = tI2 (t) -2 (t),
and the system

(3.8.4) d 44 (t) = 2 (t) , 5'2 (t) = 2 V-3i t t/t+ [tIt*2 (t) - 02 (t) I

is an equation of order two in +2(t). By elimination of F2(t), one has

(3.8.5) 8+2(t) = 42 (t) dt+ dt2 [tf" (t) +(t) I +2tttv/d,
and equations of order three may easily be obtained for +2(t) and M6(t) = t-342(t). This
last equation was given in the author's previous paper.
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Let us now present some important remarks. We may consider +2(t) as a Markovian
function of order two, since, if the two numbers 42(t) and +2'(t) are known, then the con-
tinuation of +2(t) to the right does not depend on the values of 44(u) in (0, t). In equa-
tion (3.8.5),
(3.8.6) t t2(t) - o (t)]

may be considered as an expected second derivative of +2(t), or a third derivative of +2(t).
More precisely, if 44(t) is given in (0, t), and if m'(t' It) is the conditional expectation
of 44(t), then

(3.8.7) [2mI (t' I t)] = 2 [t" (t)
at12 T2 2 -2(tI

It is easy to deduce this formula from

(3.8.8) E{l4(t )42(t2)1=y(t1,t2) = [tstyP5 (t,, t2)2 1) 2'(t) 'y(t at at2 tI
= 6t8t'2 - 2t4t'

One has
(3.8.9) t'2 at2 = 2 (t' dt'- .

Ot12 \ t

If Et(Y) is the conditional expectation of Y when +'(u) is known in (0, t), and if
u < t < t', one has y(u, t') = E{ 4(u)Ej44'(t')]}. Then the last equation may be writ-
ten in the form

(3.8.10) E144 (u) [t'2 (t_'I 2t' m(tt)+ 2 m (t' t)] =0,

which holds for every u < t, and, since m(t' It) is necessarily a linear function of the
known values of ¢2(u), one deduces

(3.8.11) t,20 m(t It) - 2t'm(t, It) +2m(t'jt) =0.
at'2 e3t,

If t' = t, one finds again formula (3.8.7).
It is easy to integrate equations like (3.8.5) [or the analogous equations with 02(t)

or MB(t)]. We speak here of an integration to the right: +2(t) and +2'(t) are known for
the considered value t, and we want to write 44(t') and 44'(t'), t' > t, in the canonical
forms
(3.8.12) 44 (t') = m'+ a' ' X 44' (t') = m"+ ,"'t"

where we have to find, not only in', m", a', a", but also the covariance p = E(Q' t").
The solution of this problem is easily deduced from the formulas

0"(t') =2 1 (t) t2 (2t'-u) uVdu ,

(3.8.13) ,
,02 (t') f P2, 1 (t) dt = 2f (t2- Ut') t. /3d

and from theorem 3.7. From this theorem it follows at once that the canonical forms
of 04(t') and 44'(t') are

( 44 (t') = 2 (t'2-ut') V3du+ 2f(t'2-ut')to

{14 / (t') = 2f (2t'-u) Z.V3du+ 2f (2t'-u) u 3
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and, since the analogous formula holds for M6, (t), this enables us to say that M5, l(t)
and formulas (3.8.13) give the canonical form of MW(t), 0'(t) and +2'(t). Indeed the
variables ' in (0, t) and the t in (t, t') are independent, and in both formulas the first
integral is a linear function of the given numbers +(t) and +2'(t). Then one has

(3.8.15) m'= 2f (t'2-ut') V3du= 2t'f [ (t'- 2t) + (2t-u) ] ,,,

= 2 -N/3 t' (t'- 2t) Xi (t) + t',02" (t),

or, taking into account (3.8.3),

(3.8.16) m ,'-+ (t) = t' (t t- 2t) [101, (t) - o (t) ]+ t'+02' (t) -0, (t)

£,4t, '(t) (t- t)t 02" (t)- t2 ) 02' (t).

If t' - t = dt, we find again formula (3.8.11). By the same method, one obtains

(3.8.17) m"- 2'(t) = 4V (t'-t) X1 (t) = 2 p_ [to" (t) - .(t)

Now, since the second terms in formula (3.8.14) are a't' and a2t, one has

r a'2 = 12t'2ft (t'-u) 2 du= 12t'2, v2d v = 4t'2 (t'-t) 3

I .2= 12 f (2t'-u) 2 du 12 (t'+v) 2dv
(3.8.18) = 4 (t'-t) (7t'2- 5tt'+t2)

I fS fS~~~~~~~12j-t,-
pa'at l

= 12 f, t' (t-u)(2t'-'u) du = 12t''f;v (+ v) dv
=2 (t'-t)2(5t'-2t) .

Formulas (3.8.15) to (3.8.18) give the complete solution of the continuation of +2(t) to
the right. It is easy to write analogous formulas for 402(t) or M(t).

3.9. The backward stochastic di.fferential equation. Let us now consider I2(t) and X(t)
as defined by
(3.9.1) X2 (t) =J Jrs2 (t) = *2, 2 (t) = 2 (- 3t+ 4u) u ,,

0

or, what is the same, by the differential equations

(3.9.2) SX2(t) =t.Vdt, 5'2(t) =2V3tSX2(t) -6VX2 (t) dt, dt>O,
with the Cauchy conditions X2(0) = *2(0) = 0. Each of the functions X(t) and I(t)
has the same distribution as in section 3.8, but the joint distribution is not the same.
Instead of (3.8.3), we have
(3.9.3) 2 1 X2 (t) - f d'2 (u)

and as was already shown, X2(t) is known if *2(u) is given in (t, co) but it is not a func-
tion of +2(t) and +2'(t) = *2(t). Thus we have a Markovian system with +'(t) and
4I2(t), and another with I2(t) and X2(t). Since, if one sets

(3.9.4) Jh = f uhûVrd
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one has

(3.9.5) X2 (t) =JO, '2 (t) = 2 3(-3ot+ 4J)

(3.9.6) 02(t) =f'2 (t)dt= (-3t2+ 8tu-5u2) 3

= /3 (-3t2PJ + 8tJj-5J2),
one sees clearly that X2(t) and '2(t), which depend only on Jo and J1, do not give the
same information as '2(t) and +2(t), as this latter function depends also on J2.

Since functions I and 0 are defined by integrals taken from 0 to t, the continuation
to the left and the continuation to the right are quite different problems. We shall speak
of both in part 5. However, we shall prove at once that the continuation of +2(t) to the
left is connected with a stochastic differential equation which is not equation (3.8.5),
where dt is essentially positive.

Starting again from (3.8.8), we obtain

(3.9.7) P 2dd - 6t ay+12,y= 0, =y (t, U) ,u2 t

and, if t _ t' _ u, we deduce, by the same reasoning as in section 3.8,

(3.9.8) E1 (u) [t2 2m'(t I t')_ 6t am' (tIt') + 12 m' (t ')]t =0,2O' (U) at2 ~~at
(3.9.9) 2[a2m 'I(t ]t'I = 6tw (t) - 1201 (t)

and finally, for negative di, one has
(3.9.10) b54 (t) = 42' (t) dt+ 3 [t4o' (t) - 2 4, (t) ] dt2 + 2 {t t dt13/2.2 2 2 2 ~~~~~~~~~~~~~t2

This equation is analogous to (3.8.5), but holds for dt < 0. The coefficient of dt2/t2 is
not the same in both equations.

The continuation of +2(t) to the left is defined by this equation, and the same method
may be applied to M'(t) or M(t). However, it seems preferable to deduce these continua-
tions from the formulas given in sections 3.3 and 3.4, as we shall do in part 5.

4. A general theory of the Gaussian random functions
4.1. Gaussian sequences. The canonical form of a Gaussian r.v. is X = ,u + art, where

,i is its expectation and af is its standard deviation. Then t is a reduced Gaussian r.v.
Consider a sequence { n} n = 1, 2, * *, of such independent reduced variables. Joint

Gaussian variables, Xn, with E(Xn) = 0, may be defined as functions of the {, by the
recurrence formula

n-i

(4.1.1) Xn N b, X+a"n^

where o is a conditional standard deviation, or by the explicit formula
n-i

(4.1.2) Xn= z an w {w+ Sntn.~~~~
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Let A,,, n > v, denote the conditional expectation of Xn when X,, X2, *, X, are
given. If

1 v

(4.1.3) mn, = an,ptp mn, I = bn,pXp,
1 1

we may consider the form (4.1.2) as canonical if Mn, = ,,, and the form (4.1.1)
as canonical if m", , = ,Un,,,, for every v and n > P. Then, the canonical definitions
of the sequence give at once the conditional canonical form of every Xn if X1, X2,* X,
v < n, are known.

If the numbers o, are all positive, one has a one-one correspondence between tn and
Xn, for every n, and obviously each of the formulas (4.1.1) and (4.1.2) may be deduced
from the other; both are canonical and Sn = a'.. Things are quite different if the set eo
of the subscripts of vanishing an is not empty (e will denote the complementary set).
Then

v 1(4.1.4) X, bv,pXp, v E o,

and, if X1, X2,* X,-, are known, X, gives no new information. We have then n, =
Mn, v-l, and, since E, is not a.s. 0, the condition m",, = Mn,, (that has to be fulfilled
as well for v - 1 as for v) implies bn, , = 0. Then the recurrent form (4.1.1) is canonical
if and only if bn, , = 0 for every v E eo and every n > v.

If this condition is not fulfilled, the considered form is not canonical, but formula
(4.1.4) may be used to eliminate the terms in X, with v E Co, and one obtains the canoni-
cal recurrent definition of the same sequence.

From this definition, it is easy to deduce an explicit definition, by successive elimina-
tions of Xn_., Xn-2,.* * in formula (4.1.1). Since the variables {, with v E Co are not
present in these formulas, and since, if n E C, one has a one-one correspondence be-
tween tn and Xn, the obtained explicit formulas have the following properties: one has
always Sn = an, and eo may be defined as the set of the subscripts v of vanishing s,;
for those v, and n > v, an,, = 0; the t, with p < v and p E C give exactly the same
information as the corresponding X,; then Mn,, = mg,,v, and the representation is
canonical.
On the contrary, when one starts from formula (4.1.2) with given coefficients an,

and Sn, it may happen that o, = 0, and an, P6 0. Then, if n is the smallest integer
n > v with an,, #w 0, {, gives information on Xn that X1, X2,- , Xn-, do not give, and
Sn < 4. One always has Sn _ 4

Let us summarize the results:
DEFINITION. Theformulas (4.1.2) give the canonicalform of the sequence if inn,, = An,,

for every v and n > v.
THEOREm 4.1. (a) The form (4.1.2), with Sn _ Ofor all n, is canonical if and only if,

whenever s, = 0 and n > v, then an,, = 0. (b) It is canonical if and only if Sn = On'for all
n. One always has Sn-< an-

It is easy to get rid of the restriction Sn > 0. One may replace (,, o, and an, , by
e,, ea,v, and evan, P, where e, = + 1; nothing is changed in the formulas. Then one has
always one and only one class of equivalent canonical forms for a Gaussian sequence. If
E{X,,} = Mn F` O one has only to add MAn to the right side of formula (4.1.2).

4.2. The general Gaussian functions of a continuous parameter. Their canonical form.
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Let Co denote the class of all Gaussian r.f. that are defined in (0, cc) and have identi-
cally zero expectations; these restrictions are not essential. If 0 E CG and if we apply
the results of section 4.1 to the sequence {1r(nr)}, and let r tend to zero, we are led to
theorems that are a quite natural generalization of those obtained for the sequences.

Let us first notice that, in formula (4.1.1), the last term is essential, and one obtains
at the limit, not an explicit expression of ¢(t), but a stochastic differential equation

(4.2.1) 50 (t) = fr G (t, dt, u) 0 (u) du+ a (t, dt)t, dt>O .

Such equations, with G(t, dt, u) = di G(t, u) and a(t, dt) = a(t)v', have been con-
sidered in previous papers of the author, [4] and [5]. Other forms are obtained in this
paper for the functions M2p+1(t) and 0,(t); then the first term of 6+(t) is a known poly-
nomial in dt and the form of a(t, di) is cp(dt/t)PV1'd. This function is identically zero only
if the process is deterministic.
On the contrary, formula (4.1.2) leads to an explicit expression of '0(t)

(4. 2. 2) f(t =|F (t, u) t. i = I F (t, u) dX (u) ,

where X(u) is the Wiener r.f. Since we have the same r.f. ¢(t) if F(t, u) is replaced by
e(U) F(t, u), where E(u) = ± 1, we have to speak, not of an expression of 4 (t), but of a
class of equivalent forms. If possible, we shall choose the particular F(t, u) that is posi-
tive for sufficiently small t - u, but this is not essential.
We know, from part 3, that a well-defined function +(t) may have two different

classes of representations of the form (4.2.2). More precisely than in part 3, we shall say
that this form gives a canonical representation of +(t) if, for every positive t, one has
exactly the same information by giving +(u) in (0, t) as by giving the value of t. in the
essential part of this interval. We consider an interval (t', t") as unessential if no more
information is obtained by giving +(t) in (0, t") than by giving this function in (0, t'].
The essential part of (0, t) is the set of all points in (0, t) that belong to no unessential
interval. Obviously, if uo belongs to an unessential interval, the canonical kernel F(t, u)
is identically zero for u = uo, t E (uo, co). Since +(u) is obviously known in (0, t) when
X(u) is known, if a representation is not canonical, then X(u) gives more informa-
tion than k(u). For given t and ' > t, the canonical form of the r.v. 4(t'), when X(u) is
given in (0, t), is obviously
(4.2.3) tnt) (if I t) + s (if t) S

with

(4.2.4) m(t |it) =ff F (t', u) {u lTdu,

(4.2.5) s (t'j t) '= f F (t', u) {1\/du,
and

(4.2.6)i2 (tf I t) = f (t', u) du.

Now if

(4.2.7) +bt' au t a(tfit)
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is the canonical form of the r.v. O(t') when 4(u) is given in (0, 5), one has the following
theorem.
THEOREm 4.2. Formula (4.2.2) gives the canonicalform of the r.f. +(t) if and only if

(4.2 .8) s(t'It) =f,F(t', u) t \/3u, O<t1<t'.

Then a- = s. If this condition is not identically fulfilled, then

(4.2.9) Et m2 (t/ | t) - A2 (t' | t) I
is nonnegative and is positive at leastfor some values of t and t'.

More briefly, the canonical form minimizes E(m2) and maximizes e2, and, for this
form, m = I, s = a.

Since m = A means that X(u) and +(u), if given in (0, t), give exactly the same in-
formation on 4(t'), the first part of the theorem is obvious and gives a new definition of
the canonical representation.

Since
(4.2.10) E{I2 (t') I =EI m2 (t/It)I + S2 (t/ t)

=E{l 2 (t'lIt) } +a2 (t'lt),

the expectation (4.2.9) is a2 - s2. Further, since X(u) gives at least the same informa-
tion as +(u), and gives more information about 4 (t') (at least for some values of t
and t'), if the representation is not canonical, the second part of the theorem is also
obvious.
An important problem which is not solved by theorem 4.2 is to recognize, when the

kernel F(t, u) is given, whether it gives the canonical form of 40(t). It was solved in sec-
tion 3.7 in the very particular case when F(t, u) = Xt + ,uu. A more general case will
be considered in section 4.6(b).

4.3. The uniqueness theorem.
THEOREm 4.3. A well-definedfunction 4 (t) has at most one class of equivalent canonical

representations.
PROOF. If ¢(t) is well defined, u(t' I t) is a well-defined r.f., and, if (4.2.2) is the canoni-

cal form of 4 (t), formula (4.2.8) holds, and we have

(4.3.1) Et g2 (t'j|t) } ;F2 (t', u) du,

where F(t', t) is the derivative of a known function. Then

(4.3.2) F (t, u) =,e (t, u) F* (t, u),
where F*(t, u) is known, and e(t, u) = ± 1.

The sign e(t, u) may be arbitrarily chosen for a particular value to of t. Then the
connection between X(u) and +(u) [in other words, between the numbers t. and 4(u)]
is well defined in (0, to), and F(t, u)Vjui = do(t)/dtu is also well defined in this interval.
Since we may apply successively this result for a sequence of indefinitely increasing
values of to, we have no other choice than a sign depending only on u, and the theorem
is proved.
We have now to speak of the existence theorem. To do this, we shall use the Schwartz

theory of distributions.
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4.4. Application of the Schwartz theory of distributions. Let us first recall the main idea

of this theory. Let C denote the class of all real functions p(t) that are continuous for
every real t, have continuous derivatives of all orders, and each of which is different from
zero only in a finite interval (which is not necessarily the same for two different func-
tions).

If f(t) is a function that is integrable in every finite interval, then the inner product
+co

(4.4.1) J0 f (t) p (t) dt= f p=U (p)

is a linear functional of p(t), well defined and finite for every function of class C. The
converse does not hold; Vo'(to), for instance, does not have the form (4.4.1). The idea
of Schwartz is to associate to every linear functional U(so) that is well defined in C a
symbolic functionf(t) for which (4.4.1) holds. Unless it is not an ordinary function, its
definition in an open interval depends only on the values of U(,P) for functions which
vanish outside of this interval. For instance, if U(so) = (o(to), f(t) is the Dirac symbolic
function A(t - to), and is 0 for t F to.

Now, if f(t) is differentiable, one has
+co +co(4.4.2) f' fO f' (t) (p (t) dt =- f (t) (p' (t) dt =-U (sp'),

and the derivative is the symbolic function associated with -U(sP'). Also the pth
derivative is the function associated with (-1)PU[kp(P)]. Then we may definef(P) by

(4.43) f(") p= (-1)PU kP(P)] ,

and, with this definition, every symbolic functionf(t) has derivatives of all orders, which
we shall denote D([f(t)]. In this section, we shall use only the first derivative D[f(t)]
of a nondecreasing function f(t), and, setting D[f(t)] = a2(t), we shall say that a(t) is
a a-function.

Suppose now that the considered function k(t) has independent increments. Then it
is well defined by its variance S2(t), which is a nondecreasing function of t, and, if one
defines F(t) by formula
(4.4.4) F2 (t) = DS2 (t),
then one has
(4.4.5) 4>(t) =jF(u) {,,\Vdu.

Obviously, F2(u) is a Lebesgue integrable function if and only if S(0) = 0 and S(t) is
absolutely continuous. However, with the Schwartz derivative, these restrictions are
not necessary; S2(t) may have jumps, and S(0) = 0 does not exclude S(+0) > 0.

Let us notice that, if F(u) is not an ordinary function, it is not possible to replace in
formula (4.4.5) .,du by dX(u), and consider ¢(t) as a linear functional of X(u). But it
may be represented by X[S2(t)].

Quite analogous remarks hold for the Maruyama integral [13]

(4.4.6) i (t) maF (t, u) a.du .

If F(t, u) is an ordinary function, 0 (t) may be written as a functional

(4.4.7 F,. r (t, u) X u,,
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of X(u), and depends only on an enumerable set of r.v. t. If we introduce ur-functions,
if for instance F2(t, u) = A[u - t7(1 + t)] [in that case, 4)(t) is the value of (u for u =
t7(1 + t)], formula (4.4.6) may represent r.f. that depend on a nonenumerable set of
r.v. {f. Thus formula (4.4.6) is able to represent r.f. that have not the form 4.4.7.

Let us now introduce a definition of separability that is not exactly the definition due
to Doob. We shall say that a r.f. U(t) is separable if we may find a sequence {It4 such that,
if all the values U(tn) are known, then U(t) is known. Unless U(t) is a very special r.f., the
set t,, } is necessarily everywhere dense. Then
THEOREM 4.4. +(t) may be represented by formula (4.4.7) if and only if it is separable

and belongs to CG.
PROOF. Let us first recall that it is easy to define a one-one correspondence between

X(t), if defined in (0, T), and an infinite sequence of reduced Gaussian r.v. (n that pre-
serves the probability.

Now, if +(t) is a separable function, and belongs to the class CG, then we may choose
a sequence t,, satisfying the separability definition. If we apply to the sequence {X(t1)I
the results of section (4.1), each O(tn), and also 4)(t) for every t, is a linear function of
the variables (, hence also of the function X(t) that is associated with the sequence { ( } .

Now, let m*(t u1) be the conditional expectation of 4 (t) when X(u) is given in (0, ul).
It is, for fixed t, a Gaussian r.f. of u1 with independent increments, to which we may ap-
ply formula (4.4.5). Then

(4.4.8) m* (t ul) = S F (t, u) t. -VTu = oF (t, u) dX (u) ,

and, if ul = 1, we obtain formula (4.4.7). Thus the first part of the theorem is proved.
Moreover, since this formula depends on the choice of the correspondence between X(u)
and the sequence { (,,J (on which every orthogonal substitution is possible), we see that
+(t) has an infinity of representations of the form (4.4.7), which is not a canonical form.

Conversely, let 4)(t) be defined by formula (4.4.7); it is a known linear function of the
variables S; that are associated with X(t). Since obviously d> E CG, we have only to
prove that this function is separable. To do it, let us consider a transfinite sequence {t,,
such that, if all the X(tI) with v preceding n are known, X(tn) is unknown. When it is
no longer possible to continue this sequence, X(t) is a known function of the X(t"). We
have to prove that the set of all the t, is then at most an enumerable set.

This is obvious. Each of the X(t^) gives new information on the sequence { t}-
Thus, at least one of the conditional standard deviations u-((Q) is decreasing. For each
t,, and therefore also for the set of all t, this may happen at most an enumerable in-
finity of times. Q.E.D.

It would be easy to give a modified proof that avoids the use of a transfinite sequence,
but the use of the Zermelo axiom seems to be essential.

4.5. The existence theorem. Roughly speaking, this theorem may be stated as follows:
every rf. of class C that fulfills a suitable continuity condition has one (and then only one)
class of equivalent canonical representations.

It is the main theorem of this theory. Unfortunately, we did not succeed in obtaining
a necessary and sufficient continuity condition. We shall only present some remarks that
show what kind of conditions may be considered, and that they are not very restrictive.

Let us suppose that +(u) is given in (0, t), and let

(4.5.1) q (t+ di) = . (t+ dt 1) + o- (t, dt) , dt>0 ,
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be the canonical form of 0(t + dt). The condition is that, for sufficiently small dt, the
value of Et gives sufficient information on the behavior of +(u) in (t, t + dt), and that we
shall nevermore need supplementary information.7 Then, for every t' > t,

(4.5.2) A, (t'It+dt) - A (t' It) =F(t', t) E,-VTt ,

where F(t', t) is a a-function of t, and, since A(t' It') = +(t'), formula (4.2.2) results from
an integration with respect to t.

Let us first notice that this reasoning holds even if a(t, dt) is identically 0, as happens
when +(t) is an analytic r.f. Then {t gives no new information; but we need no such in-
formation. In this case F(t, u) is, for given t, a o-function of a quite special kind, and the
integral (4.2.2) depends only on the behavior of X(u) in an arbitrarily small neighbor-
hood of the origin.

Now, if we suppose that 4 (t) has a.s. continuous derivatives up to order p, and that
qb(P)(t) is not differentiable, one has, for every given t,

(4.5.3) a (t, dt) = o [dtP],
and (t gives information on &4(P)(t) as well as on &t(t). If for instance, as happens in
many applications, o(t, dt) has the form a(t)(dt)P+l/2, 6+(P)(t) is known up to an error
that is a.s. o(dt), and we do not need more.

Then, to conceive an example where the necessary continuity condition is not ful-
filled, we may suppose that the t-axis is divided into two complementary sets Co and el,
and that +(t) has quite different definitions in Co and in el. For instance, let Xo(t) and
X1(t) be two independent Wiener functions, and +(t) be Xo(t) or X1(t) according as t E Co
or Cl. In this case, the existence of a canonical representation of 4(t) depends on the defi-
nition of Co and el.

Let us first suppose that {tJ, with to = 0, is a sequence of indefinitely increasing
numbers, and that t E Co or el according as the largest t. that is < t has an even or an
odd subscript. Then we want to know Xo(t) in the intervals [t2p, t2,+D), p = 0, 1, * *, and
Xl(t) in the complementary intervals. Both may easily be deduced from one function
X(t) that varies as Xi(t), i = 0, 1, in (t2p+i, t2p+i+l), and has at the point t2p+i a jump
defined by X(t2p+i + 0) - X(t2p+i- 0) = Xi(t2p+i) - Xi(t2pl+i). Then +0(t) is a func-
tion of X(t) that may be easily written in the form (4.2.2).
On the contrary, if Co is the set of all rational numbers, to define +(t), we need to

know both functions Xi(t) in every small interval (t, t + di), and one number Eg is not
able to give the necessary information. Then 40(t) has no canonical representation.

In spite of such examples, the necessary continuity condition is not very restrictive.
In this last example, we may replace Xo(t) by a Gaussian additive function that has a

jump aE' at every rational point t4, withy a2 (with t4< t) < - for every finite t;
then we have only to set X(t) = Xo(t) + Xl(t), and we obtain a canonical representa-
tion of +(t).

Let us finally remark that the measurability of +(t) is not a necessary condition. In-
deed, if O(t) = f(t)0o(t), where oo(t) has a canonical representation, then d(t) also has
one, even if the known function f(t) is not measurable.

7 Although this is not very precise, the reader will understand here why we consider the necessary and
sufficient condition for the existence of the canonical representation as a continuity condition.



GAUSSIAN RANDOM FUNCTIONS I57

4.6. The derivatives of +(t). (a) Let us now suppose that +(t) is given by formula (4.2.2),
where F(t, u) is a differentiable function of t. Then for small and positive dt, one has

(4.6.1) 6+ (t) = dtfo F (t u) NV/du+F(t, t) t,d

and we see that 0(t) is a.s. differentiable if and only if F(t, t) = 0; the derivative is then

(4.6.2) f(t)= F1 (t, u) u Vdu, F1(t,u) =F (t, u)

If F1(t, t) = 0, and if F1(t, u) is also differentiable, we obtain the second derivative +"(t),
and so on. If for instance

(4.6.3) F (t, u) - p

then the pth derivative of +(t) is the Brownian function X(t), and every term &u'/au
may be considered as a random impulsion of order p (speed if p = 1, acceleration if
p = 2). If

(4.6.4) F (t, u) = exptu
then 4 (t) is a.s. infinitely differentiable, but not analytic.

(b) Let us now return to the problem that was stated at the end of section 4.2: if
F(t, u) is given, recognize whether it is a canonical kernel.

Obviously, this problem depends on the Volterra equation

(4.6.5) (t) = F(t, u) dX (u) _ F (t, t) X (t) - i F a ) X (u) du,

and the kernel F(t, u) is canonical if and only if, for given 40(t), this equation has at most
one solution X(t) that is a possible value for the Wiener function. Let us consider the
case when

(4.6.6) F (t, t) =F1 (t, t) = * * =F,.. (t, t) = 0,

and Fp(t, u) exists, is continuous, and is 5.0 if t = u > 0; Fp(O, 0) may be 0. Then +(t)
has a.s. derivatives up to order p, that vanish for t = 0, and (4.6.5) is equivalent to

(4.6.7) d¢4t(t) = i Fp (t, u) dX (u) _Fp (t, t) X (t) iOF(tu) X (u) du.dtP a ~ tu

Then, if
1 aFp, (t, u)(4.6.8) K(t, u) F=,(t,t) du

is continuous in the area 0 _ u < t < (, the Volterra equation

(4.6.9) X (t) = fK (t, u) X (u) du

has no other solution than X(t) =- 0, and (4.6.7) has at most one solution. Then F(t, u)
is canonical.
On the contrary, if K(t, u) is not continuous, (4.6.7) is a singular Volterra equation,

and the considered problem is more difficult. This happens for all the kernels considered
in part 3, to define the functions M2,+1(t), 0,(t), *,(t) when p > 1. With these kernels,
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equation (4.6.9) has solutions that are nonidentically zero, and one has to ask whether
these solutions are suitable values for the difference of two Wiener functions. The answer
was given in section 3.7 for p = 2, n = 5. In the general case, the problem is more diffi-
cult.8

4.7. The Goursat kernels. We shall say that F(t, u) is a Goursat kernel of order p + 1 if
it may be written in the form

(4.7.1) F (t, u) = E fh (t) 'h (U),

and not in an analogous form with less than p + 1 terms. Then the functions fh(t) on
one hand, and the functions 50h(U) on the other hand, are linearly independent.

If we use the Schwartz derivatives, each of the functions fh(t) has derivatives of all

orders, and S chfh(t) is the general solution of a linear differential equation of order

p + 1

(4.7.2) Ct [f (t) ]-[DP+'- Al (t) DI'- *Ap (t) I f (t) = O,

and one has

(4.7.3) g[F (t u)] = .

Conversely, if (4.7.3) holds, F(t, u) has for every given u the forms chfh(t), and is a

Goursat kernel of order _P + 1. Thus the definition of the Goursat kernels may be
given in the following form: F(t, u) is a Goursat kernel of order _p + 1 if it satisfies
a differential equation of the form (4.7.2).
Lemma 2 in section 3.2 may now be stated as follows: if F(t, u) is a solution of equation

(4.7.3), then the covariance r(t1, t2) is a solution of

(4.7.4) g' [r (t,, t2) ] = 0, t' = max (t, t2)-
The converse statement is not always correct, as shown by the following example.

The covariance r5(t1, t2) of Mr,(t), considered as a function of t and t', is a Goursat ker-
nel of order three, and, considered for fixed t as a function of t', is a solution of an equation
of order three and of the form (4.7.2). We have seen in section 3.6 that two different ker-
nels F6, i(t, u) and F5, (t, u) give the same r.f. M5(t). The first kernel F5, i(t, u), which
gives the canonical form of M5(t), verifies the same equation, but F5, 2(t) is a Goursat
kernel of order four, and is not a solution of this equation.

This remark leads us to the following theorem.
THEOREM 4.7. If F(t, u) is the kernel of the canonical representation of +(t), equations

(4.7.3) and (4.7.4) are equivalent.
We have already proved that (4.7.3) implies (4.7.4). To prove the converse state-

ment, let us start from (4.7.4) and write it in the form

(4.7.5) Et+0(t) Ct' [A V ttl) I }=O0<l '

Since this formula holds for every t _ ti, and gf' [IA(t' t1)] is a linear functional of +(t),
0 < I _ ti, it means that a.s.

(4.7.6) gt[l(t'ItD]=0,

sLet us notice here that theorem 4.8 will give a necessary condition for the canonical character of a

given kernel. It follows from this theorem that the kernels in M6, 2(t) and M7,2(g) in section 3.6 are not
canonical. A necessary and sufficient condition will be given in another paper.
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that is, if ti is replaced by t,

(4.7.7) fA'. [F(t', u)] V du=O u t.t'

Since such an integral is a.s. zero if and only if the integrand is identically zero, (4.7.3)
is proved.

4.8. Markovian functions of order p + 1.
1°. We shall say that a r.f. O(t) is a Markovian r.f. of order .<p + 1 in the wide sense

if, for every t, p numbers (Ph(t), h = 1, 2,-*, p, may be found such that, if +(t) and
these numbers are known, then the behavior of ¢(u) in (t, - ) is independent of all other
information on the values of this function in (0, t). The order is p + 1 if it is . p+ 1
and not <p. If V(t), a vector r.f., with values in a (p + 1) dimensional space, is Markovi-
an, then each of its components is a Markovian r.f. of order .<p + 1 in the wide sense.
TiEopmm 4.8. If a r.f. 0 E CG is defined by its canonical representation and if its vari-

ance is positive for every positive t, then it is a Markovian r.f. of order p + 1 in the wide
sense if and only if the kernel F(t, u) is a Goursat kernel of order p + 1.

PROOF. If F(t, u) has the form (4.7.1), and if we set

(4.8.1) Jh (t) =f Ph (u) (sV/du,

then

(4.8.2) ,u(tIt) = E fh (t) Jh (t)
0

depends only on the p + 1 r.v. Jh(t). Since 4 (t), for every positive t, depends at least
on one of these r.v., Iu(t' It) is also, for every t' < t, a known function of +(t) and the p
other variables Jh(t). Since a(t', t) is not a r.v., the definition of 4(t') in (t, co) depends
also only on these p + 1 variables. One notices that this first part of the present theorem
holds even if F(t, u) is not a canonical kernel.

Conversely, if the numbers (Ph(t) considered in the definition of a Markovian r.f. of
order p + 1 may be found, then since u(t' I t) is a linear function of +(u), 0 < u < t, it
verifies, for every t' > t = t1, an equation of form (4.7.5). Then (4.7.3) follows as in the
proof of theorem 4.7. Q.E.D.

20. We shall say that +(t) is a Markovian r.f. of order p + 1 in the restricted sense if
(a) it is a Markovian r.f. of order p + 1 in the wide sense; (b) the derivatives +(k)(t) up
to order p exist a.s. [this implies the a.s. continuity of +(t) and its derivatives up to order
p - 1]; (c) these p derivatives may be chosen as functions Voh(t).

It is easy to give a constructive definition of the most general r.f. of class CG that has
these properties. From (a) and theorem 4.8, we deduce that we have to start from a
kernel F(t, u) of the form (4.7.1). We deduce from section 4.6 that (b) is then equivalent
to the following conditions:

(b1) the derivatives f,^() (t), k = 1, 2, -, p, exist. This implies that the functions
fh(t) and the derivatives f,(k) (t), k = 1, 2, - p - 1, are continuous.

(b) Fk (t, t) I (t) 'Oh (t) -O k = O, 1, **-, p -1.

0

Then

0
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and (c) may be stated as follows: these p + 1 linear functions of the Jh(t) are inde-
pendent; this happens if and only if the Wronsky determinant

(4.8.4) A(t)= ||fh (t) || h, k=O, 1,.*, p,
does not vanish. This condition and condition (b1) may be replaced by the following:
the functions fh(t) are p + 1 independent solutions of an equation of the form (4.7.2)
that has only regular points (this means that the Cauchy problem has one and only one
solution, for every t > 0).

Now, we have to find functions (pOA(t) that fulfill condition (b2). Let us first notice
that, since A(t) 0d 0, Fk(t, t) cannot be 0 for k = 0, 1, * *, p, then if (b2) holds, +(t) will
have a.s. derivatives up to order p, but not of order p + 1, unless all the hoh(t) vanish
for the same value of t. If A(t) is written in the form

(4.8.5) A (t) =E fh" (t) Ah (t),

then, for every t > 0, at least one of the Ah(I) is w0. Suppose Ao(t) # 0.9 Then equa-
tions (b2) define all the ratios Ph(t)/IO(t), and these ratios are continuous functions of i.
Then we have only to choose a a-function joo(t) and we have the most general solution
of our problem. Since we keep the same r.f. when spo(i) is replaced by e(t)9po(t), where
e(t) = + 1, it is well defined when the functions fh(t) and p2 (t) are chosen.

Now, we have still to prove that the constructed F(t, u) is a canonical kernel. That is
obvious. Since the functions + (k)(t), k = 0, 1,- *, p, are independent linear functions
of the JA(t), lu(t'I t), which is a known function of the Jh(t), is also a known function of
the +(k)(t), and is known when +(u) is given in (0, t).

These results are a generalization of those of part 3. The function M2,+1(t) is a Mar-
kovian function of order p + 1, in the restricted sense, and the condition that we have
used to find the coefficients ah is equivalent to condition (b) of this section. If n is an even
number > 2p, Mn(t) has a.s. derivatives up to order p, but does not seem to be a Mar-
kovian r.f. of every finite order.

3°. One may wonder if it is possible to generalize this theory by using Schwartz deriva-
tives Dk4(t) instead of the ordinary derivatives. The answer is no. If +(u) is known in
(I - dt, t), we may consider Dkck(t-0) as known. However, only in the case of continu-
ous derivatives is Dk(t - 0) = Dk.(t + 0), and these numbers may replace the num-
bers Jh(t) and give information that is sufficient to define ,u(t' It).

In general, as we have seen in the case of the function '(t) in part 3, such information
is given only by +(t) and X(t), where X(t) is given by an integral in (0, t), and is un-
known when +(t) is given only in a small interval (t, t - dt).

49. If +(t) is continuous, its values in (0, t) depend at most on an enumerable infinity
of parameters and if p -+ co, the wide definition of Markovian r.f. has no meaning. On
the contrary, however, the restricted definition leads to a new kind of Markovian r.f.
Then 4(t) has a.s. derivatives of all positive orders, and u(t' It) depends only on the values
of +(t) and these derivatives at the time t. A slightly different definition is the following
one: if 4(t- dt) is known, up to an error that is O[(dt)"] for every p (when di -+ 0),
then ,u(t' It) is known. Since the existence of the derivatives is not necessary, this defini-
tion is slightly more general than the preceding one.

9If none of the functions,Ah(t) is 5O for every positive t, then we may replace (Po(t) by 'P(t) =
k h(t) I -
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4.9. Stochastic differential equations. If, in the formula

(4.9.1) 0 (t') - 0 (t) = ,u (t'|It) - 0 (t) +a (t, t),
we suppose t' - t = dt > 0, we have an equation that may be called a stochastic dif-
ferential equation. In general, as we have just seen, ,u(t' It) depends on all the values
of +(u) in (0, t) and this equation has also the character of an integral equation. Only if
4O(t) is a Markovian r.f. of finite or infinite order in the restricted sense is it a purely dif-
ferential stochastic equation. If the order is p + 1, one has

(4.9.2) ak f(t =t) (k) (t) k = 1, 2, p

and the derivative of order p + 1 is given by formula (4.7.5). Then we obtain

(4.9.3) 50 (t) = rI(k) (t) dt + dt+ P A,-k (t) +(k) (t) + a (t+ dt, t) tt,
1 k! (p+ 1).

where

(4.9.4) a2 (t,t =J F (t', u) du.

In (4.9.3), the last term is obviously O[(dt)P+1/2], but not O[(dt)P+1].
Let us apply this result to the function M2p+1(t) considered in part 3. Then equation

(4.7.2) is the Euler equation satisfied by

(4.9.5) 1 . t ' '* * ' P11 '

and may be written

(4.9.6) f(V+l) (t) = 2 aktk-Vplf(k) (t)

where the numbers ak are, for every given p, defined by

(4.9.7) s (s-1) ... (s-p+1)- aks (s-1) ..*(s-k+2) -a1
2

= (s+2)(s+4)---(s+2p).
For small values of p, it is easy to obtain their numerical values. It is also easy to deduce a-
from formula (4.9.4) and from the expression of F(t, u) in section 3.3. Then one obtains
for positive dt,

dtk d___P_ __1 d_ p_ 1_
(4.9.8) M (t) = M(k) (t) dt+ P+l (p+1 a'tkM(1) (t) + tp.v+l/2

(4.9.9) M' (t) = kM(k)(t) dt + d !v ( + v-112

where
(4.9.10) (2p+1) ap= (2p-1) a12 - (2p))2
One also obtains easily the equations that 4(t) = tP-2M(t) and +'(t) satisfy. For this

+(t) as well as for M(t), we encounter a special case. One of the functionsf.(t) is a con-
stant; hence it disappears in the canonical form of the derivative, and this derivative is
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a Markovian r.f. of order p in the restricted sense. When this does not happen, it is a
Markovian r.f. of the same order as the integral, in the wide sense. This circumstance is
not repeated at the second derivation, and the equations verified by M"(t) or +"(t) are
not purely differential stochastic equations.

Coming back to general equation (4.9.3), it is easy to integrate it. We have to choose
arbitrarily p + 1 independent solutions of equation (4.7.2), and take them asfh(t). Then
the Voh(u) are known up to a common factor So(u), as we have proved in section 4.8, 20,
and so(u) is then given by formula (4.9.4), up to the sign, which is of no consequence.
Then F(t, u) is known, and the Cauchy problem is easy to solve. The formulas

(4.9.11) k(k) (t') =f Fk (t', u) 'du+ J Fk (t', u) tu-/du, k =0, ,... , p,

where the first terms are known functions of the given (k) (t), give not only the condi-
tional canonical form of the unknown 4(k)(t'), but their conditional joint distribution.
This method was already applied in section 3.8 to obtain the joint distribution of 02(t)
and +2'().

4.10. Final remarks.
10. In this part, we have considered only processes that start from time t = 0. How-

ever, nothing essential is changed if t is replaced by a continuously increasing function
of another parameter. Then we may suppose that the initial time to is an arbitrary time
that may be -.
We may also choose - t as a new parameter. Then we obtain a quite different defini-

tion of the same process. It has a backward canonical form

(4.10.1) b(t) = G(t, u) $'\Ii,,
and a backward stochastic differential equation, which is different from the forward
equation.

In the case of a Goursat kernel, these two equations have a simple connection. The
covariance r(t1, t2) may be written in the form (3.2.2) if and only if the canonical kernel
F(t, u) is a Goursat kernel of order p + 1. Then G(t, u) is a Goursat kernel of the same
order, and may be deduced from the functions gh(t) in the same way that F(t, u) is de-
duced from the functionsfh(t). Equation (4.7.2) is replaced by another of the same form.
The Markovian character of every order, in the wide sense as well as in the restricted
sense, is unchanged. In this last case, equation (4.9.3) is replaced by another of the same
form, which holds for negative dt, and has another term in dtp+l.

In the case of the r.f. M2,+1(t), one has fh(t)gh(t) = t. Then it is easy to deduce the
Euler equation satisfied by gh(t) from the equation satisfied by fh(t). The term in
,(dt/t)P-\dt has been written in section 3.5 for the forward differential equation; it is

the same for the backward equation, dt being replaced by \/ i di .
2°. A generalization of the preceding remark may be applied to the Gaussian func-

tions of two (or more than two) variables. To apply our theory and obtain a canonical
form for such a function qk(I, t2), we have to define the set of points (Ul, u2) that will be
considered as preceding (til, t2). If we define this set by the conditions

4.10.2 uv:! ii A i<E tj =1
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then the generalization of formula (4.2.2) is

(4.10.3) 4 (tl, t2) = 'f tF(ti, t2, ul, u2) {1,u\/du,du2

Let us notice that these conditions (4.10.2) are already used in the definition of the
distribution function of joint r.v. X and Y; this function is the probability that the
point (X, Y) precedes a given point. This definition depends on the axis. It is easy to
obtain intrinsic definitions, by introducing the Schwartz density of probability, or con-
sidering the probability as a function of a set.
On the contrary, for our problem, these methods are complicated or even impossible,

and it seems not possible to avoid the introduction of conditions (4.10.2) or other condi-
tions that would also be arbitrary and not intrinsic. For this reason, the theory stated
in this part is especially interesting in the case of Gaussian r.f. of a time-parameter.

5. The continuation of M(t)
5.1. The continuation to the right. The tool for this problem is given by formula

(5.1.1) M (t) = cp, {sVdu [I2,-i f (1 -X2) '- dx]

where M(t) = M"(t), with n = 2p + 1, and

(5.1.2) C2 = 2bIb=bo 2p-1 = I2P-1,

which was proved in section 3.3. We have already deduced

(5.1.3) M'(t)=cj(1-t-) ut VU

If o,(t', t) is the standard deviation of M'(t'), t' > t, when M'(u) is given in (0, t) [and
then M(u) is known, since M(O) = 0], then since formula (5.1.3) is the canonical form of
M'(t), one has

(5.1.4) t'cr (t', t) CJ (i -2)2P-2 u2du

C2,ft VN 29-2 d (_ t2

<_J t'ktV2 2 t'2v 2(2p-i) V t2)
and, since C2 = 0(p'/2), p o-X,X(t', t) is, for fixed t > 0 and t' > t, a rapidly decreas-
ing function of p. For t = 0, one has

1 ~~~~~~~~~2
(5.1.5) t'E{M'2 (t') = c2 ( -u2) 2X-2 u2du Ccp IPf. ~~4p-1 4-

and

(5.1.6) lim E IM12 (t') = i2t

Thus, when n = 2p + 1 -+ -, M'(t') is not a very small Gaussian r.v., and it follows
from formula (5.1.4) that, when M'(u) is given in (0, t), it is known with an indefinitely
decreasing error. Thus the process tends to a deterministic process.
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Let us notice that this is independent of the difficulties that arise when, in the defini-
tion of the Brownian function X(A), n tends to infinity, and which will be considered in
part 6. In this part, we consider only a function Mnt(t) of a real variable t. Its covariance
rF(t1, t2) has a limit r.(l, t2) given by formula (2.3.2). Then M"(t) has a limit M,(t) in
the Bernoulli sense. This means that the probability distribution in a functional space
has a limit. We knew already that M.,(t) is a.s. indefinitely differentiable. Now we know
something more: the stochastic process M.(t) is not really a stochastic process, and Me(u)
is known in (0, a)) when it is given in an arbitrary small interval (0, 5). It is also known
if all its derivatives are given at a point t. The question then arises: is M.(t) an a.s. ana-
lytic function?

5.2. The analytic character of M,(t).
TmEEoREm 5.2. M.,(t) is a.s. an analytic function.
PROOF. If n = 2p + 1 and h S p, one deduces from formula (5.1.3)

ft( dh-, rU/ U2~~ 2
(5.2.1) o, hE t [M(h) (t)] 2} = c2 t -I 1-t--) ] du-

We first have to find the limit o,2 h of this expression, for fixed h, when p - . For this
calculation

(5.2.2) d (t2- u2)P+a (t2-U2) P+[r2(p+ a)u2+2(a,) 1
(5*2*2) dt t2(P+P) t2(P+0) L t (t2 -u2) t

may be replaced by - U2) P+a 2pU2
(5.2.3) ~~~~t2(p+P) t (t2-XU2)X

and consequently
dh-1, [u / 2+

(5.2.4) dth-l[2 (1 t2

may be replaced by

(5.2 .5) r 2PU2 1h-1 U 2-U22p- )2 h-1 U2h-1 (t2- u2) P-h
) Lt (t2- u2) J 2t2 2 )t2p+h-1

and, setting u2 = t2v, we obtain

(5.2.6) = lm p 2h-V2-/2 (1 - V)2p-2h
P--*c09 2t2 Jo

= lim c (2p) 2h-2 B (2h -i 2p-2h + 1)

=2p) rh (2h i r (2p -2h +1+)

- 2-5/2t1-2hF (2h- I) lim p-3/2 c2
V--+C0~

Finally, taking account of formula (5.1.2), we have

(5.2.7) h2 r (2h-1) t-2hh4,V2T=7
Since, for large h, r(2h - 1/2)/(h!)2 is approximately 22h1-/h2V/w the general term of
the Taylor series

(5.2.8) M. (t+ T)=Mw (t) + 0h! a6, hth .
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where th is a reduced Gaussian r.v., does not tend to zero if r > 1/2, and this series is
a.s. divergent. Although the Zh are not independent, since

(5.2.9) ah =Pr { t | c av2 log h } < C/fW2 c =

andI ah < o if c> 1, one deduces from the Cantelli lemma that the contrary inequality

(5.2.10) Zh < c V2 log h

holds a.s. for sufficiently large h. Hence the considered Taylor series is a.s. convergent if
2 1Tr < t, and the theorem is proved.

More precisely, we know that the radius of convergence of this series is t/2. Thus, a.s.,
if I = rei0, M.,(t) is a regular analyticfunctionfor 01 < r/6, and all the points of the half
straight lines 0 = ± 7r/6 (sin 0 = ± 1/2) are singular points.

5.3. The continuation to the left. Many different problems may be considered. For in-
stance, according to whether M(u) or M(u) is given in (t, co), the problem is not the
same. The most interesting problem arises when X(A) is given in the entire region out-
side of a sphere Di. Then M(u) is known in (t, co), and, since M(t) = M(t) -X(O),
if ,u + at is the conditional canonical form of M(t), the canonical form of X(O) is
M(t) - - at. The problem is to find IA and o- (a obviously has the form k,-jt). Since
M(t) is invariant under the addition of a constant to X(A), M'(u) and M(u), if given
in (t, on), give exactly the same information on M(t), and since M'(t) is a Markovian r.f.
of order p in the restricted sense, one has exactly the same information if M'(t), M"(t),

, M(P)(t) are given, or also if one knows the integrals Jh(t) [see formula (4.8.1)],
which we shall write in the form

(5.3.1) J2h-1 (t) = f 2 l u h = 1, 2, * ,p .

Since the only unknown term in M(t) is now

(5.3.2) bo Jo (t) = boJf SuV/du,

and since we may suppose t = 1 (after that the generalization is easy), we are reduced
to the following problem. Setting
(5.3.3) Jk= f uk ~7i ,

one supposes that J1, J3, J2,1 are given, and one seeks the conditional canonical form
of Jo.

It obviously has the form

(5.3.4) JO = alJ + a2J3+ *+ aJ2,-_ + c

and, to find the numbers ah' and cp, one has to minimize

(5.3.5) c=E[=E - ah J2h-1] f= (1- Eaj,u2h1)2 duI1 1 1

The minimizing polynomial may easily be deduced from the theory of the Legendre
polynomials. If we set

(5.3.6) dn (1-x2) n = B.pn (x)
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(5.3.7) X:=, [d (1- X2)1] dx= (2n) / (1- x2) dx

(2n) !I2+ = 2n+1

P*(x) is the Legendre polynomial, normalized in (0, 1), and if we represent 1 in the
interval (0, 1) by the series

co

(5.3.8) 1 = iahP2h+l(X), 0 < x < 1
0

our problem is solved by the formulas
p-1 ~~P-1

(5.3.9) a 2h = a,P2^+l (x)
0 0

co

(5.3.10) cp ah2.
V

The coefficients a, are given by the Fourier-Legendre formula

(5.3.11) a.= (1rdd 1 [d= (r , n=d2p+21,

= ( I (2p) (2p+ 1) ! (-1)P 2p+ 1[(2p)!]2
X2p+1 p!(p+ 1)! x2p+1 p+1+1

Then, we deduce from formula (5.3.7)

(5.3.12) a=2 4p+3 (2p!)2 [13.-****(2p-1) 2 4p+3
24,+2(p+1)2 (p!) 4L- (2P) 4(p+ 1)2

4 J2 4P+ 3 4(2 I2=T2 Ip 4 (p+1)2=7T2(2p-2+)
and from formula (5.3.10),
(5.3.13) 2 4 I2

This is the conditional variance of Jo(t). That of boJo(t) is then

(5.3.14) k=2 4 b2I2 = 4 pj2pI2p-1 = 1 I21=
I

43. (2p-1)
IDT 2P -j 22 2p- 12-= 2.4-6.--(2P)

The values ko = 1/2, k" = 1/4 are easy to find by elementary calculations. By the
same method, the author had found

(5.3.15) k = kg=f

However, the calculations become more and more complicated, and only the Legendre
polynomials seem able to lead to the general formula.
The same method may be used to find the conditional canonical forms of M(t0) and

M'(to), to < t, when M(t) and its p derivatives (or only the derivatives) are given at the
point t. In this case the calculation is more complicated.
When p -- -, ck -* 0. This was already known, since M.(t) is analytic, but it is a
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particularly important theorem, because it gives, not only properties of M,(t), but also
of the Brownian function X(A) itself. When this function is given in the neighborhood
of a sphere, it is known exactly at the center; on concentric spheres, one knows only
averages; but, for increasing p, the convergence to this known average is faster than
at the center.

Consequences of these remarks will be stated in part 6.

6. The function X(A) in Euclidean space and in Hilbert space
6.1. The function X(A) in Euclidean space En(n = 2p + 1). One of the most impor-

tant of our theorems on M(t) is that it is a Markovian r.f. of order p + 1 in the re-
stricted sense. This property of M(t) is connected with properties of X(A). The author
did not succeed in finding satisfactory proofs of all these properties and will only pre-
sent in this section a brief sketch of a theory that merits further development.

Let us first speak of two particular problems which can be solved by the methods con-
sidered in parts 2 and 3. The first concerns the average M(r, t) of X(A) on the circle
(6.1.1) x=t,X xl2+x2+. +x2= r2

of the (n + 1)-dimensional Euclidean space. If n = 2p + 1, the covariance of the r.f.
(6.1.2) M (r, t) =M (r, t) -M (O, t) =M (r, t) -X (t),
where X(t) is a Wiener r.f., is given by an elementary integral and it is easy to extend
our continuity theorem to this case. M(r, t) has a.s. continuous derivatives up to order p,
whereas M(r, t) is not differentiable with respect to t.

Let j,(r, t) denote the conditional expectation of X(t) when M(p, u) is given for p = r
and every value of u. This function is a weighted average of the given values of M(r, u),
and has a.s. continuous derivatives up to order p. Since M(r, t) and ,u(r, t) tend a.s. to
X(t) as r tends to zero, the irregular Wiener function X(t) is then a limit of differentiable
functions of t, with a number of continuous derivatives that increases with n. In the
Hilbert space, M(r, t) and ,u(r, t) are analytic, and X(t) appears as a limit of analytic
functions.

In the second particular problem, the spheres are replaced by parallel planes. Then
it is not possible to speak of an average in the whole plane; but we may consider a weight-
ed average, for instance,
(6.1.3) m* (t) = / --f e-712/M(r, t) dr,

or

(6.1.4) m.a(t) = 2 fJaM(r, t) rdr,

which is an average in the finite circle r < a. Both have continuous derivatives up to
order p.

This has important consequences. The r.f. X(A) is not differentiable, and one cannot
speak of its normal derivative. However, ma(t) is, for every fixed a, a mean derivative,
normal to the plane xo = t, and in the (n + 1)-dimensional space, if n _ 2p + 1, the
mean derivatives of orders 1, 2,* *-, p exist. The form of the derivative of order q . p
is obviously c,, t{qal/2-, and it is probably very large if a is small, and has no limit (either
finite or infinite) when a tends to zero.

This is connected with a well-known property of X(A). If this function is given on a
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surface Q, which has a tangent plane that varies continuously, and if in a sufficiently
small neighborhood of a point H of Q and on the normal straight line one chooses two
symmetric points A and B, then there exists a negative correlation between X(A) -

X(H) and X(B) - X(H). This is easily understood. If A is on the positive side of the
surface, there is a positive correlation between X(A) - X(H) and the mean normal
derivative at the point H, and a negative correlation between X(B) - X(H) and this
derivative.
Now let Q denote a regular surface that divides the space into two regions, and let us

suppose that the following information on X(A) is given: a function x(A) is given such
that X(A) - x(A) = o(5"), where a is the absolute distance between A and the sur-
face U. Then the following statement is probably right: if such information, which we
shall call the Cauchy condition, is given, then the values of the r.f. X(A) on one side of Q are
independent of its values on the other side. If this statement is right, one can say that X(A)
also has a Markovian character (to define a Markovian r.f. of order p + 1 in an n-dimen-
sional space, one has to speak, not of p + 1 numbers, but of p + 1 arbitrary functions
depending on a point of a surface). However, this is not at all obvious. Even if Q is a
sphere, this is not a consequence of the known properties of M(t). If t is the radius of
the sphere, if OAo = to, OA1 = ti, where to < t < ti, and if 0 is the angle AOA1, one
has to prove that the conditional covariance -y(to, ti, 0) of X(Ao) and X(A) when x(A)
is given in a neighborhood of Q is zero. We have only proved that

(6.1.5) fI sin2- 0 -y (to, ti, 0) dO = 0 .

Preliminary steps to the proof of the stated theorem would be to prove it in the case
of the sphere, and also to consider other simple families of surfaces depending on one
parameter, and suitable weighted averages on these surfaces. The existence of a Markovi-
an character for such averages is a necessary, but not sufficient, condition for the cor-
rectness of the stated theorem. The author calls attention to these unsolved problems.

6.2. The Hilbert space. Preliminary remarks. In this section, we shall summarize known
results, some of which are proved in the author's books [2] and [3], the other in his recent
paper [12]. In the last sections, we shall give again a complete statement of the most im-
portant results of that paper.

The Hilbert space E., as well as the Euclidean n-space En, is separable. Hence we

may choose a sequence I A" that is everywhere dense in this space, and define the Gaus-
sian sequence {X(A.) I. The difference is that, in the Euclidean n-spaces, this sequence
defines a.s. a continuous function X(A), but not in the Hilbert space. However, it de-
fines a.s. a function X(A) that has the following properties: for every integer n, it is
continuous, not only in the XlX2... xn plane, but in every Euclidean space En c F.,
and also a.s. in every n-dimensional surface with a tangent plane that varies continuously
The following remark shows how such a function may be discontinuous in E... Let A.

be the point x,, = av2 of the xn axis, and X. = X(A.). It is easy to find the canonical
definition of the sequence { X}, and to deduce the following theorem: as n , the
average 1

(6.2.1) m =-(X1+X2+ +X-)
n

has a.s. a limit m, and the conditional distribution of X.+, when X1, X2,* *, X. are given
is X. = m,-I + at, where an tends to a. Then the sequence {X"} is a.s. not bounded,
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and since this result holds for arbitrarily small a, one can a.s. find a sequence { An', such
that A' tends to 0, and X(A') has every given (finite or infinite) limit. Thus X(A) is
neither continuous nor finite in a neighborhood of every point 0. However, such se-
quences cannot be found in an n-dimensional plane, and are quite exceptional. Probably,
one cannot find a continuous path such that A tends to 0 and X(A) to a limit different
from X(O).
We may conclude that the Brownian function X(A) is intrinsically defined in E".

Although it is often convenient to choose a sequence of axes Oxn, the r.f. X(A) does not
depend on these axes.
Now let On denote the sphere r = t in the Euclidean n space x1x2 x", and M"(t)

the average of X(A) - X(O) on the surface of this sphere. It is easy to write the se-
quence Mn(t) in the canonical form, and to deduce that it has a.s. a limit M(t). Then,
in the Hilbert space, M(t) is not only a r.f. defined by its covariance, but has the same
geometrical meaning as in the n space.

6.3. The determinism of X(A) in the Hlbert space. The case of the sphere. We shall say
that the Cauchy conditions of infinite order for the function X(A) are given on a surface
if a function x(A) is given such that, for every p, one has uniformly

(6.3.1) X (A) -x (A) = o (6P)

when the distance a between A and Q tends to zero. Then the following question arises:
when the Cauchy conditions of infinite order for X(A) are given on a surface that divides
the space in two regions RI and R2, are the values of X(A) in R. independent of its values
in R2?

1°. If Q is a sphere (with center 0), the answer is yes. This is an obvious consequence
of the following theorem.
THEoREm 6.3. If the Cauchy conditions of infinite order are given for X(A) on a sphere Q

of the Hilbert space, then X(A) is known in the region inside this sphere.
In such cases, it is more suggestive to consider the Cauchy conditions of infinite order

as Dirichlet conditions; we shall do so.
PROOF. Since M(t) and all its derivatives are known when t is the radius to of 2, this

analytic function is known, and X(O) = M(O) is known.
Now let A O be a point different from 0 in the inside of Q2, and P the plane that contains

Ao and is perpendicular to OAo. P is another Hilbert space in which we may apply the
preceding result. If M*(t) is the function that replaces M(t) when the initial space and 0
are replaced by P and AO, the Dirichlet conditions of infinite order for X(A) are known
in P on the sphere which is the intersection of P and Q; then X(A) is known at the
point Ao. Q.E.D.

Then it follows from the known properties of M(t), applied to a family of spheres that
have as center a given point Ao inside of Q, that the average of X(A) is known on every
sphere of this family, even if it is entirely outside of U2. However, one has no reason to
think that X(A) is known outside of U. Although the author has not computed the con-
ditional expectation of X(A) outside of U, he is convinced that it is positive.

20. Let' us now consider E., as the product space of two spaces P and E', where P is a
Hilbert space and E' may be a Euclidean space or a Hilbert space. Let C denote the
intersection a n P (the center of Q is not necessarily in P). We shall say that P is a
plane in E., and C a circle of the sphere U. When the Dirichlet (or Cauchy) conditions
are given on C, considered as a circle of Q, they are known on C, considered as a sphere
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of the plane P, and, since theorem 6.3 may be applied when E. and Q are replaced by
P and C, we see that if the Dirichlet conditions (of infinite order) are given, not on the
whole sphere Q2, but only on the circle C, X(A) is known in the smallest convex set con-
taining C.

For this theorem, it is an essential restriction that P have an infinite number of di-
mensions.

3°. Up to the end of this paper, we shall call closed curve the boundary of a part of a
surface, and shall consider only circles that are curves; then, in En(or E.), a circle con-
tains points depending on n - 2 (or w - 2) parameters.
Now let us suppose that the Cauchy conditions are given, not on a whole sphere Q

of E., but on a part f12 of Q, bounded by a curve C. Let &2 denote a part of Q1 bounded
by a circle C', the intersection of Q and a plane P. There results immediately from the
theorem stated in 20 of this section that X(A) is known in the volume between Q' and P.
Then, obviously, it is known in the volume bounded by Q1 and a surface S, and C is the
boundary of S. If C is a circle, S is the inside of this circle. Thus the following problem
arises: What happens in the general case? What are the properties of S?
To give an answer, it is better to replace the sphere by any closed surface. We shall

do it in the last section. We shall first give some lemmas concerning the sphere, in En
and in E..

6.4. Properties of the sphere.
1°. We shall term a curve C that divides the sphere Q,, of space En into two parts of

equal area, a median curve of Qn. It is known that the median curve that has the smallest
measure is the circle.

Let N(e, C) denote the e-neighborhood of C on U., that is, the locus of all points of Qn
the distance of which to C is less than E. Then
THEOREm 6.4.1. On a given sphere of E. and for given E, the median curve for which

N (e, C) has the smallest area is a circle.
On this subject, see chapter 1, section 3 in the author's book [3]. An immediate con-

sequence is
THEOREM 6.4.2. When n -* o, for fixed e and spheres of fixed radius, and for every

sequence of median curves Cn of these spheres, one has

(6.4.1) lim m [N (fE, C.) I

[m(-) is the measure of the considered area].
20. Another immediate consequence is the following. Let Q be a sphere of E<, with

center 0 and radius R, Q. its intersection with an n-dimensional plane P, containing 0,
and U(A) a uniformly continuous function of A, defined on Q.. Then
THEOREM 6.4.3. If U(A) is known on a median curve of 12., its average on Q, is known,

up to an error that has an upper bound tending to zero when n -+ c.

We may consider that X(A) has an average on Q2 if, and only if, the averages on Qn,
have a limit that does not depend on the choice of the plane P.. It may happen that this
limit does not exist. For instance, the function

(6.4.2) x21
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has on Q,, an average that is 0 or R2 according as Pn is OX2X4 x2,, or OxIxS. X2,,
and one cannot speak of its average on Q, unless one gives a precise definition, which
depends necessarily on the order of the axis.

3°. Since it is impossible to give a satisfactory definition of the measure on Q., one
cannot retain the definition of median curve that was given for Qn. Hence we shall give
the following definition: a curve C on Q2 is a median curve if, for arbitrary small e, and ar-
bitrarily large no, one can find n > no, and corresponding planes P", spheres Qn,, and
median curves C, such that

(6.4.3) C. c N (E, C)

Then, if U(A) is known on C, it is known on C,, with an arbitrarily small error, and
the conclusion of theorem 6.4.3 holds. However, it is still necessary to be very careful,
before speaking of the average of X(A) on Q2.

In the following section, when we shall speak of median curves, to define an average
in Hilbert space as the limit of an average in E,,, we shall only consider n, P. and C. such
that C, c N(e,,, C), where e,, -+ 0.

6.5. Application to X(A). Since X(A) is not continuous in E., one may wonder
whether the conclusion of theorem 6.4.3 may be applied to this function.

If the considered median curve C,, is a circle, the answer is given by the following
theorem.
THEOREm 6.5.1. The average of X(A) is a.s. the same on a sphere Ql with radius r and on

every given median circle C of this sphere.
PROOF. The function M(r, h) considered in section 6.1 is a.s. continuous, for every

positive r. Then, if the considered circle is in the plane xo = 0, the average M(r cos 0,
r sin 0) is a.s. a continuous function of 0, and, when e -O 0, the average of X(A) in
N(e, C), which is M(r), tends to M(r, 0), which is its average in C. Hence the theorem is
proved.

Since this theorem holds for every positive r, all the derivatives of M(r) are a.s. the
same if M(r) is defined as the average of X(A) on Q, or on the intersection of this sphere
and of the plane xo = 0. An obvious consequence is that the Dirichlet conditions for
X(A) give exactly the same information on the values of X(A) in the plane xo = 0 if
given on the whole sphere or only on its intersection with this plane.
We knew this already. It is an obvious consequence of the theorem proved in 20 of

section 6.3. However, the new proof points the way to an important generalization. It
is difficult to prove that this generalization is right; the author may only say that he is
convinced it is right.
The idea is that the new proof starts from a continuity theorem. If the value of X(A)

or the Dirichlet conditions are given on a curve C, and if C' is deduced from C by a slight
modification, a randomization occurs, and, if we compare the conditional standard devia-
tions of an average on C' and of X(A') for a particular point of C', the first is much
smaller than the second. Thus the new information obtained on X(O) when X(A) or
the Dirichlet conditions are given on C' amounts to almost nothing.

Now, let us consider a median curve C on the sphere Q1. Its measure and the measure
of its e-neighborhood, in the sense deduced from theorems 6.4.1 and 6.4.2 by a passage
to the limit, are as small as possible if C is a circle. Thus one has at least as much infor-
mation when X(A) or the Dirichlet conditions are given on C as when they are given on
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a median circle. Moreover, all the examples that were considered in this paper lead to
the idea that the randomization that was just considered is better for an (n + 1)-dimen-
sional set than for an n-dimensional set, and better for a large surface than for a small
one. That is the best reason to think that, when the Dirichlet conditions are given on a
median curve C, the values of X(A) in N(f, C) have a.s. the following property: if they
are known, the new information on X(A) may be neglected if e is small. Since N(e, C)
is almost all the sphere Q, it follows that M(t) and all its derivatives are known for the
considered value of t, M(t) is known for every t, and X(O) is known.

Although these remarks are not a proof, the following theorem is very likely.
THEoRE1m 6.5.2. If X(A) is given on a median curve of the sphere Di, then M(t) is a.s.

equal to a well-defined linearfunction of the given values [to avoid any confusion, let us say
more precisely that, in this theorem, the given values are not an arbitrary function of A
on Q, but some information on a function that is supposed to be a possible function
X(A), and has a.s. some restrictive properties].

Although this theorem is not actually proved, it is easy to prove the following one.
THEOREm 6.5.3. Ifthe Dirichlet conditions of infinite order are givenfor X(A) on a median

curve r of the sphere Qt, then X(O) is known.
PROOF. One has only to prove that M(t) and all its derivatives M(P)(t) are known

for the value t considered. Since M(t) is a.s. an analytic function, it will follow that
M(O) = X(O) is known.

Let N(e, T, r), where r < f, be the locus of points of Qt+T whose distance to r is less
than f. The average of X(A) on this area is M(t + T), and, if for instance e = 2T, it is
known up to an error that is 0(74P), for every fixed p and arbitrarily small r. Then M(t)
and M(P)(t) are known. Q.E.D.

6.6. Generalization.
1°. The case of a closed surface.
THEOREpm 6.6.1. If the Dirichlet conditions for X(A) are given on a convex and closed

surface 5, then X(A) is known at every interior point 0.
PROOF. Let Q denote a sphere with center 0, A a point of Q, r the distance OA, and a

the intersection of the ray OA and Q. Then r is a continuous function of a, and S may be
defined by this function.

Let Dn be the intersection of Q and the plane Ox1x2 . x,, (or every n-dimensional plane
containing 0); let pn be the median value of r on Qn. Then r = pn defines a median curve
on this sphere. When n tends to infinity, since the numbers Pn are bounded, there exists
at least a number p that is a limit of p,n for a partial sequence of subscripts n. We may
suppose that Q has the radius p. Then r = p is a median curve of 12, and, since the Dirich-
let conditions are given on S, they are known on this curve, and it follows from theorem
6.5.3 that X(O) is known. Q.E.D.

20. The condition that S is convex is not essential. If several points of this surface are
on the same ray, one has only to choose one of them, and the proof holds. The following
remarks, however, are necessary to avoid possible confusion.

One may wonder whether one obtains the same value of X(O) if, for instance, the cho-
sen value of r is, on every ray, the largest or the smallest. If the given values of X(A) are
arbitrary, the answer is no; the given values are superabundant. However, the existence
of X(A) has been proved, and no contradiction is possible. Thus, if the given conditions
are superabundant, one may avoid every difficulty if one supposes that they are deduced
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from a sample function. Then they are fulfilled by at least one function belonging to a
set that may be called the set of possible functions, and, if one chooses any one of the
several methods to obtain X(O), one is sure that the result does not depend on this choice.

Now, if S is not a convex surface, it may happen that the median value pn will be re-
placed by an interval (p', Pn"). Even if pn is well defined, it may happen that, for in-
definitely increasing n, one has, not a well-defined limit p, but all the points of an in-
terval. Then p may be arbitrarily chosen in this interval, and we have an infinity of
methods to obtain X(C). However, there is no need to consider the case when all do not
give the same value. If the given values give some information on a sample function, one
is a.s. that no contradiction is possible.

30. The case of a curve. The condition that S be a closed surface is no longer essential.
We have already proved it in the case of the sphere. To know what happens when the
Dirichlet conditions are given on an open part S' of a closed surface S, the best method
is to consider first the case when they are given only on the boundary C of S'.
We shall use the following definitions. A half cone with vertex 0 is called a median

cone of space if its intersection with a sphere with center 0 is a median curve of this
sphere. If a point a describes this curve, and if A is the point of the ray Oa defined by
OA = f(a), wheref(a) is a given function, we shall say that the curve C that A describes,
seen from 0, is a median curve of the space, or that 0 is a median point of view of C.

Let us now consider a line L and a curve C surrounding L. This means that every
continuous surface bounded by C has at least a common point with L. If, for instance,
L is an infinite line that is asymptotic to the two sides of a straight line, it is obvious that
it contains at least one median point of view of C. Then the locus of these points of view
is at least a surface bounded by C. It is also obvious that, in an n-dimensional space, it
is in general a surface; however, things are more complicated in the Hilbert space. Then,
to see what happens, if for instance the xl axis is surrounded by C, we shall apply first
the preceding result in the x1x2 ... x,, plane, and suppose that, for sufficiently large n, L is
in this plane. Then we have in this plane a curve C. which is the intersection of C and the
plane, and the locus of the median points of view of C, is a surface Sn, that has at least a
common point An with L. It may happen that, when n tends to infinity, An and Sn have
limits A and S, and, in this case, X(A) is known on S. However, it may also happen that
An have no limit. In this case one may conceive of S. as a vibrating membrane, and
every point of a volume V is a limit of points of a partial sequence of these surfaces.
Then X(A) is known in the whole volume V.

It is easy to show by an example that this second case is possible. Let us set
co co

(6.6.1) X2n X2n-1 = r'2
1 1

and let us consider, on the cylinder
(6.6.2) r2+ r'2 =R2

of the Oxox...* space, the curve

(6.6.3) (C) x0=r.

If 0 < p < R, in the plane xo = a which is a Hilbert space, the curve

(6.6.4) (C') r2= a2, r/2 =R2-a2
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is a part of C, and N(e, C') is almost the whole surface bounding the volume
(6.6.5) r2 < a2, r/2 <R2 - a2.

Then, if the Cauchy conditions are given on C, they are known on C' and X(A) is known
in the whole volume
(6.6.6) 0 <a <R, r2 < a2, r2 <R2-a2.

If one changes suitably the order of the axis, every point of this volume is a limit of
points of the surfaces Sn.

4°. The case of an open surface. Let us come back to the case of a closed surface S,
divided by C into two surfaces S1 and S2. In the first case, when the Dirichlet conditions
given on C define X(A) only on a surface 2, if they are given in Si, i = 1 or 2, X(A) is
known in the volume Vi between Si and 2. In the second case, when the Dirichlet condi-
tions, given on C, define X(A) on a volume V, then, if given in Si, X(A) is known in a
volume Vi, and U is contained in the intersection of V1 and V2.

In such cases, the remarks presented in the second part of this section are essential.
The given conditions are superabundant, but one may assume that no contradiction is
possible. If S' is Si - N(e, C), with very small S, and if the Dirichlet conditions are given
on S', then X(A) is known in a volume V' and V' u V' is only a part of the volume
bounded by S. However, the difference may be entirely in a neighborhood of C, and
then the want of given conditions in N(e, C) hinders us only in obtaining X(A) in this
neighborhood.

50. Finally let us recall that the properties of the surfaces S or volumes V that are loci
of median points of view for curves C are connected with the properties of the minimal
surfaces in the Hilbert space.10 If the locus is a surface, it is a minimal surface. However,
it is generally not a surface, and in this case the definitions of the mean curvature of a
surface, and of the minimal surfaces, are relative to particular sequences of secant
planes P,,. It follows that the theory is rather complicated, and not quite satisfactory.
On the contrary, in the present theory, the conditional standard deviation of X(A) for
every possible information is always well defined, and the conclusion of the theory ap-
pears quite satisfactory.
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