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1. A formalization of statistical reasoning
The purpose of this paper is to formalize statistical reasoning, or, more generally, to

formalize the type of reasoning employed in experimental science. It is natural to ques-
tion whether or not such formalization has already been developed in modem logic. The
answer, in the opinion of the author, is no. An essential part of the reasoning in experi-
mental science is concerned with the making of predictions and deciding whether certain
experimental evidence confirms these predictions, is at variance with them, or is inde-
cisive with regard to them. Experimental confirmation is not even expressible in present
day logic.

It can happen that some evidence confirms a given prediction whereas other evidence
is at variance with it. Thus there is always uncertainty attached to our predictions even
after they have been experimentally verified. This uncertainty suggests the advisability
of introducing probabilities into our formalization. It has been popular in recent years to
define probability as a measure. That is, we consider a nonnegative measure function de-
fined over a field of subsets of some space such that the measure of the entire space is
unity. A probability is then a measure assigned to one of the sets. There are of course
infinitely many measure functions which can be chosen except in the most trivial case,
and this concept of probability does not suggest any criterion for preferring one choice
to another. In experimental science, on the other hand, the choice of measure is of vital
importance, and our formalization must take this fact into account.

2. Predictions and observations
Since a prediction is a sentence we shall let sentences be the elements of our formal

system, and shall denote them by small italic letters with or without subscripts. We
shall combine sentences in the usual manner by the Boolean operators. We shall denote
the operators "and," "or," "not" respectively by /\, \v, -. We shall denote the com-
plete disjunctive operator by +. It is defined by the equation x + y = (x ^ -y) v-
(y A -x). That is, x + y is interpreted to mean "x or y, but not both." Thus the basis
of our system is a Boolean algebra (or Boolean ring), B. We shall denote the zero element
of B by 0 and the unit element by 1.
We shall not regard all of the elements of B as predictions. In particular, we shall

never predict the element 0. We shall predict only those elements which are sufficiently
probable. An assignment of probabilities to the elements of B together with a decision
as to the confidence level will automatically determine which of the elements are predic-
tions.

It remains to indicate how observations can be formalized. Consider two predictions
x, y and suppose that after these predictions have been made, x is observed to have oc-
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curred, that is, x has been verified. We should then reappraise y. That is, we should now
concern ourselves with "y on the assumption that x has been verified." This is, of course,
the conditional. All of the elements of B should be reappraised in this manner, that is,
they should be replaced by the corresponding conditionals. Thus an observation is a
mapping of B into a new Boolean algebra B' whose elements are conditionals. In par-
ticular, x maps into 1.

3. Conditionals
Consider two sentences x, y which can be stated in the form of predictions. Then if

x d 0 it is legitimate to make the prediction "y if x" and hence "y if x" should be an
element of B if x and y are elements of B and x is not 0. We shall let C denote the oper-
ator "if" and y C x denote the sentence "y if x." Then y C x is a conditional and, in
fact, in computing its probability it is customary to regard it as meaning the same thing
as the sentence "y on the assumption that x has been verified." We shall identify these
two meanings of the conditional.

If an element x is verified by observation then an element y is mapped into y C x.
The new Boolean algebra which is produced by this mapping is denoted by B C x. Thus
the verification of x is the mapping B -- B C x. An observation on x is either a verifica-
tion of x or a verification of -x. Let us investigate what happens when two successive
verifications occur on two elements x, y of B. After the verification B -+ B C x the ele-
ment y becomes y C x and the verification of y becomes the verification of y C x, that
is, the mapping B C x -- (B C x) C (y C x). The resultant of the two verifications
maps an element z into (z C x) C (y C x). On the other hand the resultant of the two
verifications is equivalent to a verification of x ^ y and hence z maps into z C (x ^ y).
Thus we must have the equation
(3.1) (z C x) C (y C x) = z C (x^y).

The resultant of the two mappings is the mapping B -+ B C (x ^ y).
We shall require the conditional to be such that the sentences x and y C x deter-

mine the sentence y A x. Hence if y C x = z C x then we must have y A x = z A X.
Finally, if x, y are elements of B and x $ 0 then we require the existence of an element z
such that z C x = y. This existence requirement is not essential for the present discus-
sion but it is harmless and does result in a somewhat more elegant set of properties of
the conditional. The following are the postulates for the conditional.

P3.1. x, yE B and x w0=y C xE B.
P3.2. x 0 O-=x C x = 1.
P3.3. (-y) C x = -(y C x) if x 56 0.
P3.4. (yC x)(zxC x) = (y^z) C xifx O0.
P3.5. z C (x^y) = (z C x) C (y C x) if x'Ny z 0.
P3.6. y C x z C x and x 0=y^\x = z x.
P3.7. x, y E B and x z 0O= there exists z such that z C x = y.
We can interpret y C x as the sentence "y is implied by x" or as "x implies y." How-

ever, y C x is not equivalent either to material or strict implication. In fact the operator
C cannot be defined in terms of the Boolean operators. A Boolean algebra which con-
tains an operator C satisfying the above seven postulates is said to be implicative.

Henceforth whenever we write an expression such as y C x it will be understood
that x # 0. The following five theorems are easily proved.
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T3.1. (y C x) -/ (z C x) = (yx z) C x.
T3.2. (y C x) + (z C x) = (y + z) C x.
T3.3. (y C x) = (xry) C x.
T3.4. 1 C x = 1.
T3.5. x C 1 = x.

For x C 1 = x C (1 / 1) = (x C 1) C (1 C 1) = (x C 1) C 1 and hence x =x C 1.
The following definition introduces a new operator denoted by X.
D3.1. (a) zCx=yandz"x=z-z=xXywhenx5 O.

(b) xXy= Owhenx= O.
T3.6. x X y is unique.
T3.7. x X (y C x) = x ^ y.
Theorem 3.7 enables us to interpret X as the operator by means of which we can com-

bine the sentences x and y C x to produce the sentence x ^ y.
T3.8. x ^ (x X y) = x X y.
T3.9. x X y = x X z and x 5 O '> y = z.

For let u C x = y, v C x = z. Then x ^ u = x X y = x X z = x ^ v and y = u C x =
(x "u) C x = (x r\ v) C x = v C x = z.

T3.10. x X (y + z) = (x X y) + (x X z).
T3.11. x X (y /\ z) = (x X y) ^ (x X z).
T3.12. xX 0 = 0.
T3.13. x X 1 = 1 X x = x.

The equations of T3.13 are obvious when x = 0. If x 0 0 then x X 1 = x X (x C x) =
x ' x = x. Moreover 1 X x = z where z = z C 1 = x.

T3.14. x X y = 0=x = 0or y = 0.
T3.15. (x C y) C z = x C (y X z).

For let u C y = z. Then u^ y = y X z andx C (y X z) = x C (u y) = (x C y) C
(u C y) = (x C y) C z.

T3.16. x X (y X z) = (x X y) X z.
For let uC (xXy)=z= (uCx)Cy. Then u ^ (xXy)= (xXy)Xz and
(u C x)y=yX z. Hence xX (yX z) =xX ((u C x) ^\ y) = (xX (u C x))
(X X y) X u A (X X y) = u A\ (X X y) = (X X y) X Z.

4. The ring-like character of implicative Boolean algebra
We shall give an alternative set of postulates for implicative Boolean algebra using

only the operators + and X. In terms of these two operators we shall then define the
remaining Boolean operators and the operator C. These postulates will display the ring-
like character of implicative Boolean algebra.

P4.1. B is an Abelian group with respect to 0.
P4.2. x E B -n x + x = 0.
P4.3. B is a semigroup with respect to X, 1.
P4.4. x X y = x X z and x O=- y = z.
P4.5. x X (y + z) = (x X y) + (x X z).
P4.6. 0 X x = 0.
P4.7. x X y = l'y= 1.
P4.8. x,yE B=* there exist x', y', z E Bsuch thatxX y' = yX x', (1+ x) X z=

yX (l+x').
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P4.9. x y,x',y',z,x",y" Bandx 0OandxXy'=yXx'and(l+x)Xz=
y X (1 + x') and x X y" = y X x" - there exists u such that y" = y' X u.

These postulates can be satisfied by a system in which 1 = 0, but in this case all of
the elements are 0. In the following theorems it will be assumed that this trivial case is
excluded. In P4.3 it is understood that 1 acts as a unit when operating on the right.

T4.1. I X x = xfor I X x = 1X (I X x) and hence x = I X x.
T4.2. xXy= l=xx=y= 1.
T4.3. x, y E B - there exist unique x', y' such that
(a) x X y' = y X x'.
(b) x X y" = y X x" : there exist u, v suck that x" = XIx'Xu,y" yI X v.

In the proof we consider separately three different cases.

I. x=y=0=x'=y'= 1.

II. x= O,y$ 0 x' =O,y' =1.
x 0,y= 0 X= 1,y'=O.

III. x wd O, y 0 °-

The existence of x', y' follows from P4.8, P4.9. To prove the uniqueness suppose that
there exist a pair x', y' and another pair x", y" both satisfying (a) and (b). Then there
exist u, u' such that x" = x' X u, x' = x" X u' = x' X (u X u') = x' X 1. Then
x' =0 x" = 0 = x' and x' 0 0=u X u' = l u = u' = =x" = x'. Similarly
y = y.
We have the following definitions.
D4.1. x ^ y = x X y' = y X x' where x', y' are defined as in T4.3.
D4.2. x C y = x' if y # 0, y C x = y' if x # 0 where x', y' are defined as in T4.3.
T4.4. x ^ x = x.
T4.5. xl\y = yl\x.
T4.6. (x ' y) \ z = x- (y- z).

For let
(a) x^ y = x X y' = y X x',
(b) (x^\y)'^zz=xXy'Xz'=yXx'Xz'=zXu,
(c) y Z = y X z" = z X y",
(d) x^\(y^z)=xXv=yXz"Xx"=zXy"Xx".

Then (b), (c) there exists x"' such that u = y" X x"'. Hence
(e) x X y' X z' = z X y" X x"'.

But (d), (e) : there exists s such that x"' = x" X s. Hence
(f) (xNy)Nz =(x' (y\z))X s.

But x ^ (y ^ z) = (y^ z) ' x and (x ^y) t z = z \ (xN y). Therefore, there
must exist t such that

(g) x' (y \ z) = ((x^y) ^\z) X t.
Theorem 4.6 is then a simple consequence of (f), (g).

T4.7. x X (y^z) = (xX y) ^ (x X z).
For if x = 0 then xX (y z) = 0 = (xX y) /\ (xX z). If x#0 let y ^z = yX z'
=zXy'. Then xX(y^\z)=xXyXz'=xXzXy'. Moreover xXyXz"=
xX z X y y X z" = z X y" there exist u, v such that y" = y' X u, z" = z' X v.
Therefore x X (y ' z) = (x X y) ^\ (x X z).

D4.3. x y = 1+ (1 +x) (l+y).
T4.8. x-y= x+y+ (x^y).
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T4.9. x X (yvz) = (x X y) v (x X z).
For x X (y vz) = x X (y + z + (y ^\ z)) = (x X y) + (x X z) + ((x X y) ^(x X z))
= (xXy)) (xXz).

T4.10. x^ (y z) = (x^y) \/ (x z).
For xt"(y z) = x(1 + (l+y) (I+z)) = x+ (x (l+y) (1+z)) =
(x ^y) + (xt"z) + (x^y^z) = (x^y) \v (x^z).

T4.11. x+y= (x (+ y)) (y (I+x)).
T4.12. x/(y+ z) = (x^y) + (x ^ z).

Forx^(y+z) = x ((y^(I+z)) (z^(I+y))) = (x^y (+ z)) \"(x/\z
+y)) = (x Ny (l+(x\vz)))v(x'z (l+ (x y))) = (x .y) + (x '\z).

T4.13. x^(xXy) - xXy.
For (x X y)>X 1 = x X y.
T4.14. xX x =xx= 0orx= 1.
With the aid of these theorems it is not difficult to verify that a system B satisfying

the above nine postulates is a Boolean algebra provided ^\, \v are defined by D4.1,
D4.3 and -x is defined to be 1 + x. Moreover, the operator C defined by D4.2 satis-
fies postulates P3.1 to P3.7.

From T4.13, T4.14 it follows that a nontrivial implicative Boolean algebra is atomless.
In fact every element is infinitely divisible. Since there exist atomic Boolean algebras,
the operator C cannot be defined in terms of the Boolean operators. On the other hand,
it is known that an arbitrary Boolean algebra can be imbedded in an implicative Boolean
algebra and hence the introduction of the operator C produces no essential restriction.
In a paper as yet unpublished Professor Richard BUlchi shows how to construct a natural
model for every implicative Boolean algebra.

5. Probabilities
We shall introduce the following postulates for probabilities:
P5.1. x E B p(x) is a nonnegative real number.
P5.2. x^ y= 0=p(x+ y) = p(x)+ p(y).
P5.3. p(1) # 0.
P5.4. p(x X y) = p(x)p(y).
The following theorems are easily proved.
T5.1. p(1) = 1.
T5.2. 0 _ p(x) . 1.
T5.3. p(x v y) = p(x) + p(y) - p(x ^ y).
T5.4. p(x ^y) = p(x) p(y C x) = p(y) p(x C y).

For p(x ^ y) = p[x X (y C x)] = p(x) p(y C x).
Independence is defined as follows.
D5.1. x1x,x2, x,n are independent provided

(5.1) p(xI X2 * .. ^X.) =p(X1X X2X* X X,)
and provided a similar condition holds for every subset of these elements.

6. Development of the formalization
We have seen that the verification of an element x is the mapping B B C x. The

verification of x followed by the verification of y (where both x and y are regarded as
elements of B) consists in the two mappings
(6.1) B - B C x - (B C x) C (y C x) = B C (x ^ y) .
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The verification of y followed by the verification of x consists in

(6.2) B -- B C y-- (B C y) C (x C y) = B C (x^ y).

Hence verification is commutative. Clearly it is also associative.
The verification B -f B C x maps y into y C x. If y C x = 1 and the verification

of x is followed by the verification of y then the second verification is the identity map-
ping and hence the verification of x is equivalent to the verification of x followed by the
verification of y. We then say that the verification of x produces the verification of y.
For the verification of an element x to produce the verification of an element y it is nec-
essary and sufficient that x A y = x and also necessary and sufficient that x strictly
imply y. The verification of an element x is said to produce an observation on an element
y if it produces the verification either of y or of y.

Suppose that B -+ B C a produces an observation on x and an observation on y. Then
this mapping produces a verification of x ^ y if it produces a verification of x and of y.
Otherwise it produces a verification of -(x ^\ y). Furthermore, the mapping produces
a verification of x v- y if it produces a verification of x or of y or of both. Otherwise it
produces a verification of -(x \v y). However, it is possible to produce a verification
of x -v y without producing an observation either on x or on y and it is possible to pro-
duce a verification of -(x ^\ y) without producing an observation either on x or on y.
If a mapping B -- B C a produces a verification of x v/ y but does not produce obser-
vations on both x and y then we can follow the mapping by another mapping

(6.3) B C a - (B C a) C b = B C (a X b)

which produces observations on both x and y. Since the first mapping carries x \/ y
into 1 the mapping B -+ B C (a X b) must carry x \/ y into 1 and hence must produce
a verification of x or of y or of both. A verification of -(x A y) which does not produce
observations on both x and y can be similarly treated.
An observation on y C x shall mean a verification of x followed by an observation

on y. The verification of x maps y into y C x and the observation on y then maps y C x
into 1 or 0. If y C x maps into 1 it is said to be verified and if it maps into 0 then
-(y C x) is verified. No mapping which produces a verification of -x shall be regarded
as producing an observation on y C x. If a mapping B -* B C a produces a verification
of x and an observation on y then it can be regarded as the resultant of the two mappings

(6.4) B-B C x- (B C x) C (a C x) = B C (x A a) = B C a .

The second mapping carries y C x into 1 or 0.
Next consider a mapping B -- B C a which produces observations on both x and y.

Then x and y map into x C a and y C a. Consider the element

(6.5) (y C a) C (x C a) = y C (x-^a).

If x is verified by the mapping then y C (x ^\ a) = y C a and y or -y is verified accord-
ing as y C (x ^ a) is 1 or 0. If -x is verified then y C (x ^ a) is undefined. Thus we
obtain a verification of y C x or verification of -(y C x) or no observation on y C x
according as (y C a) C (x C a) is 1 or 0 or undefined. It would have been much more
satisfying if we could have characterized observations on y C x in terms of the possible
values of the element
(6.6) (y C x) C a = y C (x X a),
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but unfortunately such a characterization could not give us an accurate picture of the
way in which observations on y C x are actually made. It is nat in general true that y C
(x X a) is equal to y C (x A a).
We consider next the formalization of predictions. We start by assigning probabilities

to the elements of B in accordance with P5.1 to P5.4. Then we choose a number X such
that 0 < X < 1. We predict every element x of B for which X < p(x). Thus the as-
signment of probabilities and the selection of X produce the formalization of predictions.
The usual practice is to choose X = .95.

It remains to decide what can be said of those elements x for which p(x) < X. We
concern ourselves with success ratios of finite sets of such elements rather than with the
individual elements and hence we are led to the problem of formalizing the concept of
success ratio. If we are given a set of elements xl, x2, x, then we can form the ele-
ment

(6. 7) O<k<k, * k< Xkt Xk2 AXkr ff 0 < r5_n .(6.7) Yr=O<k<k,< ... <k,<n f O rn

We also let y, = 1 if r< 1 and y, = 0 if n < r. If a verification B-B C a produces
observations on ali of the elements xl, x - *, x,, then the success ratio for these ele-
ments is at least r/n if and only if yr is verified. The success ratio is exactly r/n if and
only if y, A 'y,r+ is verified. Next let I be any interval and let

(6.8) Zi =

!,i Yr^ Yr+1

Then x, is the element which is verified if and only if the success ratio lies in I.
Suppose that xl, -** , x,, are independent, that each p(x) = p and that p is in-

terior to I. It is well known that a sufficiently large n will then produce a z, for which
p(z/) _ X. In this case we predict z,, that is, we predict that the success ratio will lie
in I. Now suppose that we make an observation on zl. If z1 is verified we decide that the
common probability is correct to within the degree of accuracy determined by the in-
terval I. If -z1 is verified we decide that p is not correct. This does not mean that the
observation on z1 proves either the correctness or incorrectness of p. Rather this ob-
servation produces a criterion by which we come to a tentative decision. Further ob-
servations may cause us to reverse this decision.

Our procedure gives us a check on the assignment of a common probability to a finite
set of elements assumed to be independent. The number of elements need not be large
but if we wish to check the probability to within a high degree of accuracy a large num-
ber of elements is required. The probability of a single element x is checked only when
this probability is such that we predict a success ratio of 1 or 0. Even an observation with
respect to such a prediction does not produce much of a check on our particular choice
of p(x). In this connection it should be noted that the above procedure for checking the
common probability p of a set of events is applicable even when p > X.
The above criterion for deciding the correctness or incorrectness of probabilities gives

to probabilities a meaning which is significant with regard to the predicted behavior of
the physical phenomena to which the probabilities are attached. When we speak of the
probability that a given event will occur, then we would seem to imply that this prob-
ability has something to do with occurrence or nonoccurrence. In fact, if there were no
relation between probabilities and occurrences then the phrase "probability of occur-
rence" would be misleading. The phrase is however suggestive rather than misleading
and the above criterion furnishes the relation between probabilities and occurrences.


