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We are concerned with a functional relation:

(1) P,=F(xi, a, #) =F(Y,)
(2) Y = a+pxj
where Pi represents a true value corresponding to x,, a, P represent parameters, and Yi
is the linear transform of Pi. At each of r 2 2 values of x, we have an observation
of pi which at xi is distributed as a random variable around Pi with variance O2. We are
to estimate the parameters as a, , for the predicting equation

(3) pi = F (xi, a, ,) .

By a least squares estimate of a, , is generally understood one obtained by minimizing

(4) E (Pi-23;) 2 .

Although statements to the contrary are often made, application of the principle of
least squares is not limited to situations in which p is normally distributed. The Gauss-
Markov theorem is to the effect that, among unbiased estimates which are linear func-
tions of the observations, those yielded by least squares have minimum variance, and the
independence of this property from any assumption regarding the form of distribution
is just one of the striking characteristics of the principle of least squares.

The principle of maximum likelihood, on the other hand, requires for its application a
knowledge of the probability distribution of p. Under this principle one estimates the
parameters a, , so that, were the estimates the true values, the probability of the total
set of observations of p would be maximum. This principle has great intuitive appeal, is
probably the oldest existing rule of estimate, and has been widely used in practical appli-
cations under the name of "the most probable value." If the pi's are normally distributed
about P1 with or0 independent of Pi, the principle of maximum likelihood yields the same
estimate as does least squares, and Gauss is said to have derived least squares from this
application.

In recent years, the principle of maximum likelihood has been strongly advanced un-
der the influence of the teachings of Sir Ronald Fisher, who in a renowned paper of 1922
and in later writings [1] outlined a comprehensive and unified system of mathematical
statistics as well as a philosophy of statistical inference that has had profound and wide
development. Neyman [2] in a fundamental paper in 1949 defined a family of estimates,
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the R.B.A.N. estimates, based on the principle of minimizing a quantity asymptotically
distributed as x2, which have the same asymptotic properties as those of maximum likeli-
hood.

F. Y. Edgeworth [3] in an article published in 1908 presented in translation excerpts
from a letter of Gauss to Bessel, in which Gauss specifically repudiated the principle of
maximum likelihood in favor of minimizing some function of the difference between esti-
mate and observation, the square, the cube or perhaps some other power of the differ-
ence. Edgeworth scolded Gauss for considering the cube or any other power than the
square, and advocated the square on the basis of considerations that he advanced him-
self as well as on the basis of Gauss's own developments in the theory of least squares.
Fisher's revival of maximum likelihood in 1922 is thus seen to be historically a retro-
gression. Whether scientifically it was also a retrogression or an advance awaits future
developments of statistical theory for answer, for I do not think the question is settled by
what is now known.
When one looks at what actually has been proved respecting the variance properties

of maximum likelihood estimates, we find that it comes to little or nothing, except in
some special cases in which maximum likelihood and least squares estimates coincide, as
in the case of the normal distribution or the estimate of the binomial parameter. What
has been mathematically proved in regard to the variance of maximum likelihood esti-
mates almost entirely concerns asymptotic properties, and no one has been more un-
equivocal than Sir Ronald Fisher himself in emphasizing that this does not apply to real
statistical samples. I hasten to note that, from what has been proved, there is a great
deal that reasonably can be inferred as respects approximate minimum variance of the
maximum likelihood estimate in large samples. But these are reasonable guesses, not
mathematical proof; and sometimes the application in any degree, and always the
measure of approximation, is in question. Of greatest importance is this: the maximum
likelihood estimate is not unique in possession of the property of asymptotic efficiency.
The members of Neyman's class of minimum x2 estimates have these properties and he
introduced a new estimate in this class, the estimate of minimum reduced x2. Taylor's [4]
proof that the minimum logit x2 estimate for the logistic function and the minimum
normit x2 estimate for the normal function advanced by me [5], [6] fall in this class di-
rects attention to the possibility of its extension.

In this paper is presented such an extension applying to a particular situation in
which Pi = 1- Qi is the conditional probability given xi of some event such as death,
and where Yi = a + i3xi is the linear transform of Pi. This is the situation of bio-assay
as it has been widely discussed.
We define a class of least squares estimates either by the minimization of

(5) (A) Wi(pi-pi) 2

where pi is an observed relative frequency at xi, distributed binomially about Pi, pi is
the estimate of Pi and l1wi is any consistent estimate of the variance of pi; or by the
minimization of

(6) (B) Wi (y,-9i) 2

where yi is the value of the linear transform Yi corresponding to pi, 9i = 4 + j$xi is
the estimated value of the linear transform in terms of 4, 4, the estimates of a, ,B, respec-
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tively, and 1/W; is any consistent estimate of the variance of yi. The quantities (5) and
(6) which are minimized are asymptotically distributed as x2.
The minimum logit x2 estimate and the minimum normit x2 estimate fall in the de-

fined class of least squares estimates (B), and, as I mentioned previously, Taylor proved
that these are R.B.A.N. estimates. Recently Le Cam kindly examined the class of esti-
mates given by the extended definition and in a personal communication informed me
that, on the basis of what is demonstrated in the paper of Neyman previously referred
to and Taylor's paper, this whole class of least squares estimates can be shown to have
the properties of R.B.A.N. estimates. They are therefore asymptotically efficient.
The defined class contains an infinity of different specific estimates, of which a par-

ticular few suggest themselves for immediate consideration.
Suppose we minimize

(7) , p -pi) 2

where ni is the number in the sample on which the observed pi is based and the pi of the
weight wi is constrained to be the same value as the estimate pi. If pi is a consistent esti-
mate of Pi, then P,4,/n, is a consistent estimate of the variance of piand this estimate falls
in the defined class. Now the expression (7) is identically equal to the classic x2 of Pearson,
so that this particular least squares estimate is identical with the minimum x2 estimate.

Suppose we have some other consistent estimate of Pi which we shall symbolize as
p= 1 - 4, (omitting the subscripts i) and we minimize

(8) z pQ~~~~n (Pi-pi) 2;

then this is a least squares estimate as defined. The weights wi = n/P4. are now known
constants, and to minimize (8) we set the first derivatives equal to zero and obtain the
equations of estimate
(9) n-

(pi ) dP =
O

(10) ni (pi -_p) dpi = 0

If now we specify that in the conditional equations (9), (10), p = f that is, that the
values yielded as the estimates shall be the same as those used in the coefficients, then
the equations of estimate become

( 1 1 ) z p 4 (~~Pid i a) a °

(12) (p -Pi) 0=

The equations (11) and (12) are just the equations of estimate of the M.L.E. Therefore
the M.L.E. is also a particular member of the defined class of least squares estimates.

This may be presented more directly in a way that emphasizes an interesting point.
Suppose the independently determined consistent estimate P. to be used in the
constant weights wi for minimizing (8) is in fact the one obtained as the solution of (11)
and (12). Then pi, the estimate obtained, will be the same as was used in the weights
and this is the M.L.E. This is clear if we observe that we should obtain these least
squares estimates as the solution of (9), (10), and we already have noted that these are
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satisfied with pO = pi if pi is the M.L.E. The estimate obtained by minimizing (8) is
consistent with the estimate used in the weights, only if the estimate appearing in the
weights in equation (8) is the M.L.E. For instance, if we use for P. in the weights wi not
the M.L.E. but the minimum x2 estimate, the estimate which will be obtained is not the
minimum x2 estimate, nor is it the M.L.E., but another estimate which is neither, al-
though it too is asymptotically efficient. This is seen at once if we note that the condi-
tional equations of estimate for the minimum x2 estimate [7] are not (11), (12) but

(13) niPq+iicp
( 143) ni pq( Pi di (Pi _ pi),dpi =0

( 1 4 ) z ni ~~~(PAi 2 ( -p
9 i0

I should like to make quite clear and convincing that the M.L.E. is derivable as a
least squares estimate and that this is not an artificial contrivance used to lure the
M.L.E. into the family of defined least squares estimates. In fact there is a reasonable
way of proceeding by which the M.L.E. is derived as the most natural or least arbitrary
of the least squares estimates of the family (A). Suppose one had never heard of the
M.L.E. but only of a least squares estimate in the sense of minimizing (5). To obtain
such an estimate, it would be natural to wish to use for 1/wi the value P,Q,lni. It would
be realized that we did not have P1Q,lni because we did not have the true value Pi =
1 - Qi, and it would be natural to suggest that, not knowing the true value, we should
use an estimate. But what estimate? It would be reasonable to say that we should use
the same estimate as the one which we were going to use for the final estimate. If this is
what we wished to accomplish how would we go about getting the desired result? We
might proceed by taking first some provisional estimate, p. = 1 -4. We would then
obtain the least squares estimates by differentiating (5), yielding the estimating equa-
tions (9), (10). The least squares estimates would thus be the solution of these equations
(9) and (10). In general the estimates obtained would not be the same as those used
provisionally, that is Pi 0 P.. We would then take the estimates just obtained and use
them as new provisional values to obtain new estimates. We would notice that the new
estimates are closer to those used originally and repeating the procedure we would notice
that the two estimates, the one used in the weights and the one obtained using these
weights, became closer and closer to one another. At some point we would be satis-
fied that we had fulfilled closely enough the objective of obtaining a least squares esti-
mate minimizing (5) with the weights wi in terms of the estimates, that is wi = n,/p,4i.
Now the procedure that I have described is just the mechanics of obtaining a M.L.E. in
the standard way. For what we would be doing is obtaining by iteration a solution of
equations (11), (12), which are the estimating equations of the M.L.E.

Objectively an estimate is defined by the estimating equations of which it is the solu-
tion, and not by the motivation by which these equations are obtained. The estimating
equations (11), (12) can be obtained from a requirement to meet the condition of maxi-
mizing the probability of the sample, but they are also derived if a least squares criterion
is set up, as just described. It is therefore as legitimate to consider the estimate a least
squares estimate as it is to consider it a M.L.E. It suggests itself as a possibility that the
minimum variance characteristics of the M.L.E., such as they are, are obtained by this
estimate because it minimizes a squared deviation of the observation from the estimate
rather than because it maximizes the probability of the sample.
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The most familiar consistent estimate of the variance of pi is given by piqi/ni where
pi = 1 - qi is the observed relative frequency and ni is the number in the sample on
which it is based. If we use this estimate to define wi we shall minimize

(15) p (pi- pi) 2.

The expression (15) is equal to the reduced x2 of Neyman, so that another familiar
estimate in the defined class of least squares estimates is the minimum reduced x2 estimate
of Neyman.
Now I turn for a moment to the least squares estimates (B) defined in terms of the

linear transform y. A consistent estimate of the variance of y is given by

(16) ff2 (asymptotic) =P q

where z is the value of Z = aPI/ Y corresponding to the observed p. The corresponding
least squares estimate is obtained by minimizing

(17) (yi-9i) 2

This is the estimate which when P is the logistic function I have called the "minimum
logit x2 estimate" and when P is the integrated normal distribution function I have
called the "minimum normit x2 estimate." In general we may perhaps call it the "mini-
mum transform x2 estimate."

Of the estimates mentioned, the minimum transform x2 estimate is the easiest to com-
pute, since it is obtained directly as a weighted least squares estimate of a straight line
with known constant weights. The other estimates generally require iterative procedures
which are usually time consuming and cumbersome to calculate.

Another pair of estimates in the defined class that have a special interest are those in
which for the weight wi in (5) or the weight Wi in (6) we use the reciprocal of the true
variance of pi or yi, respectively. These will of course be of no practical application be-
cause in practice we shall not know the true variances, since they are functions of the
parameters which it is the purpose of the procedure to estimate. Such estimates because
of their impracticability were called "ideal" least squares estimates by Smith [8]. But in
a number of developments which have been discussed, one can discern a desire to use
weights which, as closely as possible, are proportional to the inverse of the true variances
[9], [10], [11], [12] and one is curious to know what sort of estimate is obtained if one
actually uses the true variances.
The six estimates mentioned will be considered, that is, the M.L.E., minimum x2,

minimum reduced x2, minimum transform x2 and the two ideal least squares estimates,
the one in terms of the function P, the other in terms of the transform Y. All are asymp-
totically efficient, but we are interested in their variance properties for finite samples.
To get some idea about this I resorted to experimental sampling. The general method of
sampling and calculations employed are described in reference [13]. The number of
samples on which each estimate is based is given in table I. The situation dealt with
simulates that of a bio-assay: in which (i) the probability of death for varying doses is
given by (1) the logistic function, and (2) the integrated normal distribution function;
(ii) with three equally spaced doses, 10 at each dose; (iii) for dosage arrangement (a)
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symmetrically about P = 0.5, with P = 0.3, 0.5, 0.7, respectively, and (b) asymmetri-
cally with the same spacing of dosages with central P = 0.8.

The results are exhibited in tables II through VII. In all the tables the results are
shown for both the logistic function and the normal function. Since the relationship of
the estimates one to the other was found throughout to be the same for both functions, I
shall refer to this or that characteristic of the estimate without specifying the function
to which it applies, because it will always apply to both.

TABLE I

NUMBER OF SAMPLES USED IN CALCULATION OF STATISTICS

LoGisTIc NORIMAL

EsTImAT1S

a Estimated a and p Estimated a Estimated a and p Estimated

1. Maximum likeli- Total population Total population Stratified sample Stratified sample
hood 600 600

2. Minimum x' Total population Stratified sample Stratified sample Stratified sample
1,000 100 100

3. Minimum re- Stratified sample Stratified sample Stratified sample Stratified sample
duced x2 100 100 100 100

4. Minimum trans- Total population Total population Stratified sample Stratified sample
form x2 600 600

5. Ideal, least Stratified sample Stratified sample Stratified sample Stratified sample
squares, function 100 100 100 100

6. Ideal, least Total population Total population Total population Total population
squares, transform

TABLE II

,B KNOWN, a To BE ESTIMATED, CENTRAL P = 0.5

LoGisTic, a=0 NORMAL, a=O
1/I =.149 1/I -.056

ESTIMATZ

Bias Variance M.S.E. Bias Variance M.S.E.

1. Maximum likelihood 0 .158 .158 0 .058 .058
2. Minimum x2 0 .139 .139 .001 .054 .054
3. Minimum reduced x2 .002 .229 .229 .001 .086 .086
4. Minimum transform x2 0 .137 .137 -.001 .054 .054
5. Ideal, least squares, function 0 .165 .165 0 .061 .061
6. Ideal, least squares, transform 0 .191 .191 0 .066 .066

Table II shows the results for the estimate of a, when ,B is considered known, for the
true P's corresponding to the x's symmetrically disposed about central P= 0.5. One
finding may occasion surprise. I refer to what is contained in line 6, that is, the ideal
least squares estimates in terms of the linear transform. These estimates are obtained
from a simple least squares fit of a straight line using as constant weights the reciprocal
of the true variances. The estimate is unbiased, but its variance is not the smallest among
the estimates; in fact, except for number 3, the minimum reduced x2 estimate, it has the
largest variance. The estimate is a linear function of the observations, it is unbiased, but
it does not have minimum variance. On its face this finding appears to violate the Gauss-
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Markov theorem. The explanation of this riddle can be best presented with findings
shown in succeeding tables and will be deferred till these are discussed. The ideal least
squares estimate in terms of the linear transform, then, does not have minimum vari-
ance; and neither, as may be noted, does number 5, which is the ideal least squares esti-
mate in terms of the untransformed variate p. We may now examine the practical least
squares estimates, that is, those which are computed in terms of the observations, and
which could be applied in practice; these are the ones listed number 1 through 4. Among
the practical least squares estimates, it is not the maximum likelihood estimate but the

TABLE III

a, f, BOTH To BE ESTIMATED; ESTIMATE OF a, CENTRAL P = 0.5

LOGISTIC, a= 0 NORMAL, a=O

ESTIMATE-

Bias Variance M.S.E. Bias Variance M.S.E.

1. Maximum likelihood 0 .187 .187 0 .068 .068
2. Minimum x2 .002 .179 .179 0 .061 .061
3. Minimum reducedx2 .003 .312 .312 .011 .116 .116
4. Minimum transform X2 0 .154 .154 0 .058 .058
5. Ideal, least squares, function -.005 .212 .212 .003 .077 .077
6. Ideal, least squares, transform 0 .191 .191 0 .066 .066

TABLE IV

a, ,, BOTH To BE ESTIMATED; ESTIMATE OF P3, CENTRAL P = 0.5

LOGISTIC, ,=.84730 NORMAL, 6=.52440

ESTIMATE-

Bias Variance M.S.E. Bias Variance M.S.E.

1. Maximum likelihood .095 .313 .322 .045 .106 .108
2. Minimum x2 .062 .276 .280 .023 .095 .095
3. Minimum reduced x2 .213 .464 .509 .115 .171 .184
4. Minimum transform x2 .048 .268 .271 .027 .093 .094
5. Ideal, least squares, function .114 .336 .349 .062 .126 .129
6. Ideal, least squares, transform .108 .303 .315 .049 .102 .104

TABLE V

, KNOWN, a TO BE ESTIMATED; CENTRAL P =0.8

LOGISTIC, a=0 NORMAL, a=0
I/I=.208 I/I-.071

ESTIMATE

Bias Variance M.S.E. Bias Variance M.S.E.

1. Maximum likelihood .056 .246 .249 .027 .089 .090
2. Minimum x2 -.059 .207 .211 -.035 .075 .076
3. Minimum reduced x2 .189 .261 .296 .090 .097 .105
4. Minimum transform x2 - .097 .187 .196 -.038 .064 .066
5. Ideal, least squares, function .051 .217 .220 .040 .116 .118
6. Ideal, least squares, transform .059 .181 .184 .103 .053 .064
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minimum transform x2 estimate that shows the smallest variance, while the largest vari-
ance is shown by the minimum reduced x2 estimate, which is the only one exceeding that
of the M.L.E. Before proceeding to the next table, I should like to add to the riddle about
line 6 a riddle about lines 4 and 2. At the head of the table you will see given the numeri-
cal value of 1/I, where I is the amount of information. This, it is to be recalled, is the
lower bound for the variance of an unbiased estimate. On line 4 and line 2 it may be seen
that the minimum transform x2 estimates and minimum x2 estimates are unbiased, but
that their variances are less than this lower bound value.

TABLE VI

a, ,, BOTH To BE ESTIMATED; ESTIMATE OF a, CENTRAL P = 0.8

LoGISTIC, v=0 NORMAL, =a0

EsITmAE
Bias Variance M.S.E. Bias Variance M.S.E.

1. Maximum likelihood -.026 1.102 1.103 -.019 .311 .311
2. Minimum x2 .037 .970 .972 .039 .273 .275
3. Minimum reducedx2 -.049 1.221 1.223 .032 .397 .398
4. Minimum transform x2 .084 .682 .689 .036 .268 .270
5. Ideal, least squares, function -.029 1.066 1.067 .030 .303 .304
6. Ideal, least squares, transform .133 .873 .891 .081 .254 .261

TABLE VII

a, ,, BOTH TO BE ESTIMATED; ESTIMATE OF ,, CENTRAL P = 0.8

LoGIsTIc, 0-.84730 NORMAL, ,-.52440

EsTimATz
Bias Variance M.S.E. Bias Variance M.S.E.

1. Maximum likelihood .088 .458 .466 .023 .123 .123
2. Minimum X2 -.019 .392 .392 0 .111 .111
3. Minimum reduced x2 .002 .570 .570 .087 .158 .165
4. Minimum transform x' -.077 .202 .208 -.052 .076 .079
5. Ideal, least squares, function .088 .411 .419 .042 .110 .112
6. Ideal, least squares, transform -.044 .258 .260 -.044 .077 .079

Table III shows the results for estimate of a with central P = 0.5, when a and , are
both considered unknown and are estimated simultaneously. If line 6, which records the
results for the ideal linear x2 estimate, is examined, it will be noted that again it fails to
achieve the smallest variance. Among the practical least squares estimates exhibited in
lines 1 through 4, the minimum transform x2 estimate shows the smallest variance, the
next in order being the minimum x2, the M.L.E., and minimum reduced x2. Table IV
shows the estimate for , in the same conditions as just described for a. As can be seen
on line 6, it is again found that the ideal linear x2 estimate fails to achieve smallest vari-
ance, but now this riddle is wrapped in an enigma for the estimate is not only not mini-
mum variance, but it is not unbiased. One can easily find textbook proofs that a linear
regression fitted by least squares is unbiased in the estimates of the parameters. What is
the explanation of the present finding? It is, I should say, that while we are dealing with a
linear functional relation, we are not dealing with a linear regression. By a regression of y
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on x I understand the conditional expectation of a random variable y, given x. Now the
primary functional relation Pi is a regression, because while it is written as for the true
value Pi, it is a fact that the expectation of the observed values of the binomial variate pi
is the true value Pi. Therefore the function gives the expected value of the dependent
variate pi at the same time that it gives the true value of Pi. In the linear transform
equation (2) Yi, the true value of the transform (that is, the transform of the true Pi), is
a straight line function of xi, but the expectation of yi, the observed values of the trans-
form (that is, the transform value of the observed pi), does not have as its expectation
the true transform Yi. We are dealing with an example of the elementary and well
known fact that the average of a function is not necessarily equal to the function of the
average. In all the discussion that has taken place in recent years about fitting a func-
tion by way of the linear transform, it appears that this point has been overlooked.

If we consider the enigma explained, we still have to deal with the riddle it contained.
In the case of estimating a for central P = 0.5, the estimate of a is unbiased, but still
the ideal linear x2 estimate did not attain minimum variance. The explanation, I believe,
is this: when we say that the Gauss-Markov theorem refers to unbiased estimates of the
parameter, we should understand that this means unbiased for all values of the parame-
ter. An estimate may be unbiased for some special situation, as it is for the estimate of a,
with symmetrical disposition of the P's about central P = 0.5, but if it is not unbiased
for all other situations, then it may not have minimum variance even where it is un-
biased. The same consideration of the estimator's being sometimes but not always un-
biased is the explanation of the apparent paradox shown in table II, of the attainment
by the minimum transform x2 estimate and the minimum x2 estimate of a variance
which is less than 1/I, even though they are in that experiment unbiased. The complete
formula for the lower bound contains the term ab/da where b is the bias, and if the
value of the quantity is negative, it is possible for the variance of the estimate to be less
than 1/I even if the value of b = 0.

Tables V, VI and VII show results respectively similar to those shown in tables II,
III and IV except that the dosage arrangement now corresponds to true P's asymmetri-
cally disposed around P = 0.8. In table V are shown the results for estimate of a, ,
known. Inspecting line 6 again it is seen that the estimate of a is biased, which no longer
surprises us; but the variance and mean square error paradoxically are now smallest
among the estimates listed. This finding, however, is just an exhibition of the mischievous-
ness of this estimate, which seems bent on creating confusion; we shall see presently that
it is not always of smallest variance when it is biased. Returning to the orderly part of
the comparisons, we find that among the practical least squares estimates, the minimum
transform x2 estimate has smallest variance and mean square error, the minimum Pear-
son x2 next, the maximum likelihood next, and the minimum reduced x2 estimate the
largest. Also we may note again that the minimum x2 estimates attain variances less
than 1/I. Table VI exhibits the results for the estimate of a when both parameters are
to be estimated. In line 6 we may now observe that here the minimum linear x2 estimate
does not have minimum variance and neither is it unbiased. The practical least squares
estimates are in the same order in magnitude of the variances and the mean square errors
as previously noted. In table VII the results are shown for estimate of ,B; the same order
is shown again in the magnitudes of the variances and mean square errors.

I may summarize as follows: for a situation involving the binomial variate, a class of
least squares estimates has been defined which are R.B.A.N. estimates. An estimate of
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this class has been derived which is identical with the maximum likelihood estimate.
While it is in this class of best estimates, the M.L.E. is not necessarily the best among the
best. In some circumstances the M.L.E. may be among the worst of all best possible esti-
mators. For the logistic function and the normal function, the M.L.E. was compared in
a specified situation with three other least squares estimates, the minimum x2, the mini-
mum reduced x2 and the minimum transform x2, with respect to variance and mean
square error. The order of the magnitude of the errors was found to be smallest for the
minimum transform x2, next for the minimum x2, next for the maximum likelihood, and
largest for the minimum reduced x2.

0 c c 0 0

Note added in proof. After the presentation of this paper, an extension of the class of least
squares estimates (A) was developed, applicable to a multinomial variable.

Suppose there are r 2 2 classes, the probability of the events in which are, respec-
tively, Pi = F1(0), P2 = F2(0),) * *, P, = Fr(8), where 0 represents one or more param-
eters. When n trials have been made, a generalized minimum x2 estimate is obtained
as the value of 0 which minimizes

(18) xo = z~~~~~(o°i -ei) 2(18)
e

where
ei = nFi(0) is the "expected" number in the ith class,
oi is the observed number in the ith class,
eo = nFi(Oo), where Oo is any consistent estimate of 0.
It may be shown (see Le Cam [14]) that any estimate falling in the defined class is

R.B.A.N. and therefore asymptotically efficient, and that the x2 of (18) is distributed
asymptotically as x2 with (r - 1 - s) D.F., where s is the number of parameters
estimated.
By suitably defining Oo, the estimate obtained is the maximum likelihood estimate,

the minimum x2 (Pearson) estimate or the minimum reduced x2 estimate.
A general two-step procedure for obtaining the estimate is as follows:
Obtain a preliminary estimate Oo as the estimate of 0 which minimizes

(19) z (oi- eo) 2

where eo = nFi(0). This estimate Oo will be consistent [2]. Compute the respective
values of eo, and, using these as constants, minimize (18).

Employing the example presented by Sir Ronald Fisher [15], the maximum likelihood
estimate, the minimum (Pearson) x2 estimate, the minimum reduced x2 estimate, and
the "two-step" generalized x2 estimate were compared with respect to variance and
mean-square-error. The results obtained so far are only preliminary, but it is clear that
the maximum likelihood estimate is not always the best among those compared.
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