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I
STATISTICAL MECHANICS as a field of theoretical physics owes its origin and de-
velopment to theories of atomism. I use the term "atom" in a generalized sense
to include molecules, atoms, electrons, quanta of energy. An atomic theory is
one that resolves physical reality into discrete constituents, or particles. The
most striking characteristic of contemporary physics is the general acceptance
of the hypothesis that physical systems consist of particles, at least from a sig-
nificant point of view. The idea goes back to Democritus and similarly minded
Greek philosophers, who invented the concept of the atom in order to reconcile
the rational demand for unity and permanence in reality with the mutability
of observable phenomena. The atomic theory, however, did not make signifi-
cant quantitative progress until the nineteenth century. Then Dalton proposed
his atomic theory for chemical systems. Subsequently Clausius, Maxwell, and
Boltzmann developed the kinetic theory of gases. Later, it was found that
electrical theory required atoms of electric charge. Since the beginning of the
present century atomistic conceptions have found their way into the theory of
energy, and have become the instruments of a quantum theory which is based
on discontinuity in natural processes. The physiochemical systems which con-
temporary science investigates are conceived to be composed of many particles,
corpuscles, atoms.
The problem posited by atomism arises in the following way: The classical

physicist investigated and described physical phenomena in terms of concepts
which expressed quantities that were relatively directly determined by experi-
ments. If, for example, he wished to describe the observable properties of a
gaseous system he employed the concept of volume, which is measurable by
operations performed with a standard rod; the concept of temperature, which
is measurable by a thermometer; the concept of pressure, which is measur-
able by a manometer. Between these measurable quantities the physicist
sought functional relations which would involve empirical constants. There
was a period in the nineteenth century when an influential school of thought
taught that physics should not go beyond the establishment of generalizations
concerning the observable properties of physical systems. To this school of
energetics, classical thermodynamics was the ideal of physical theory. The
course of development, however, has been guided by physicists who were not
content with such a restricted goal. These physicists sought a deeper, more de-
tailed description and explanation of physical phenomena. They have ex-
plained large-scale, observable processes in terms of fine-scale processes which
are beyond the range of ordinary perception. Thus a kinetic-molecular theory
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of gases was created, according to which the large-scale properties of gaseous
systems are determined by the mass action of a large number of molecules. The
pressure of a gas is the average time-rate of transfer of momentum per unit
area; the temperature is correlated with the kinetic energy per degree of free-
dom. From the mechanics of a system of molecules, and correlations between
measurable and molecular quantities, it was possible to derive the empirically
discovered equation of state of a gas.
Now it was not possible to describe the motion of a system of molecules in

terms of the mechanics of individual particles. A classical description of the
motion would require specification of initial values of coordinates of position
and components of momentum. The molecules, however, were too small to
make such observations on all of them; and I might add, according to quantum
mechanics the classically necessary observations could not have been com-
pleted in principle. Even if the necessary observations could have been made,
the enormous number of molecules would have made the mathematical solu-
tion of the problem beyond the range of our present capacities. In this situation
the physicist had recourse to statistical concepts. It proved possible to deter-
mine, for example, the fraction of the molecules in a gaseous system which on
the average would have speeds between 400 and 401 meters per second. The
recourse to statistics was not as great a renunciation as one might think at first
sight. It is statistically defined quantities that determine the observable prop-
erties of matter. Indeed, it would be inappropriate to apply the concept of
temperature to a system of only one particle. Thus statistical knowledge about
systems of particles provided the basis for the explanation of large-scale proc-
esses in terms of fine-scale ones.
With the foregoing preliminary statement as background, I now set forth

the program of statistical physics. The basic problem is to explain the observ-
able properties of physical reality, especially the average properties in a state
of equilibrium, in terms of the integrated action of an assembly of particles.
Two modes of procedure have been devised. First, one may construct a model
of the system under consideration and inquire into the distribution laws for
the particles. A historic example is the model of a gas which was constituted
of elastic spheres. The Maxwell-Boltzmann law expresses the distribution of
energy over the system of molecules. It is a, = Ae- /kT, where at is the number
of molecules characterized by the energy e, at temperature T. For such a model
one also derives expressions for the entropy and other thermodynamic quan-
tities. Second, one may seek to give a dynamical explanation of large-scale
phenomena in terms of general principles. Especially has the attempt been
made to explain the second law of thermodynamics without recourse to a de-
tailed model. Now, in the effort to solve these problems concerning assemblies
of particles, use has been made of the statistical properties of ensembles of
assemblies. Such an ensemble is an assembly of a higher order, and in general
will be a fiction. In the strict sense of the term, statistical mechanics probably
should be restricted to those investigations into distribution laws and the laws
of thermodynamics which employ ensembles of systems. The earlier kinetic
theory of gases considered problems of assemblies of molecules with the aid of
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a concept of probability. In statistical mechanics, statements about probabili-
ties were replaced by statements concerning relative distributions within
clearly defined ensembles. In this survey I give especial attention to these
ensembles.

II
In order to describe the ensembles employed in statistical mechanics it is neces-
sary to explain the methods of describing the state of systems that are studied.
In classical dynamics the state of a system is specified in terms of coordinates
of position, ql, * * *, q., and components of momentum, pi, . * *, p.. A set of
these quantities constitutes the instantaneous phase of tWe system. The time-
rate of change of these canonical variables is determined by Hamilton's canon-
ical equations,

OH . OH

It is convenient to represent the phase of a system by a point, the coordinates
of which in phase space are the q's and p's. Motion of a system is then repre-
sented by progress along a curve in phase space. Since physiochemical sys-
tems consist of many partial systems, two kinds of phase space are employed,
the p-space and the P-space. The p-space is the phase space for the partial
system, such as a molecule of a gaseous system. If a molecule has r degrees of
freedom, its phase is represented by a point in a g-space of 2r dimensions. If
there are N molecules in the total system, its momentary state is represented
by a constellation of N points in the g-space. The P-space is the phase space
for the total system. If the total system consists of N partial systems, each
having r degrees of freedom, the P-space will have 2Nr dimensions. To the
constellation ofN points in g-space corresponds a single point which represents
the total system in F-space.
The statistical study of systems is based upon a distinction between micro-

physical state and macrophysical state. This distinction may be explained with
the aid of the p-space, which is conceived to be subdivided into a large number
of volume elements. In classical physics this subdivision of the phase space of
the partial system could be carried out in an arbitrary manner. A microphys-
ical state is defined by the assignment of individual molecules to the various
cells. If the N molecules of a gas are designated a, b, c, , a microphysical
state would be specified by the statement that molecules a, b, c are in cell 1,
molecules d, e are in cell 2, and so forth. Such a specific assignment of individual
partial systems in a total system is also called a complexion. If the cells of
p-space are of equal volume w, a volume wN in P-space corresponds to the com-
plexion which defines the microphysical state. A macrophysical state for a gas
is determined by the distribution of the molecules among the various cells of
p-space. A distribution is specified in terms of the numbers of molecules in the
cells. Thus a distribution is exemplified by the statement that there are three
molecules in cell 1, two molecules in cell 2, and so forth. The distribution of
similar partial systems among cells determines the observable properties of
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the total system. In general terms, a macrophysical state is determined by a
distribution a,, a2, a3, * * * . A distribution law expresses the numbers a, as func-
tions of the specification of the cells and the conditions of the system. As
previously mentioned, the Maxwell-Boltzmann law expresses the distribution
of the molecules of a gas with respect to energy. To a specific distribution there
correspond many complexions. A given macrophysical state can be realized by
many microphysical states. Assuming interchangeability of the partial sys-

NI
tems, the number of complexions for a given distribution is a,! a .

. This

number has been fundamental in the statistics based on classical mechanics and
on the classical quantum theory. The volume in P-space corresponding to a

distribution is N! wN.
a, 1a21 . . .

As we shall see, the foregoing concepts have been modified in order to take
account of the discontinuity in physical processes which has been revealed by
the quantum theory. The first form of the quantum theory imposed quantum
conditions upon motions that were otherwise classically determined. The phase
space of a quantum system was assigned a discrete structure, such that for a
system of f degrees of freedom the volume of the cells was hf. The systems
studied, multiply periodic systems, admitted the introduction of angle and
action variables, w1, w2, w3, * * * and J1, J2, Ja, * * * respectively. The action
variables were quantized in accordance with the condition Ji = nih. For quan-
tum theory a phase space was also used in which J1, J2, J3, * are the coordi-
nates of a point in f-dimensional action space. The phase space of the action
variable has Nr dimensions in the J's. In quantum statistics the assignment
of a point to a cell in phase space may be interpreted to mean that the point is
restricted to the center of the cell.

III

The study of assemblies of particles with the aid of representative spaces is
based on the properties of ensembles. These are the time ensemble of the given
real system, and virtual ensembles of similar systems. P. Hertz also used the
term "space ensemble," but in place of it I use the term "assembly." I first
take up the time ensemble, which may be defined as the aggregate of phases
through which a single system passes in the course of time, together with the
relative durations of the system in these phases. In order to represent the time
ensemble, changes of a system during time may be indicated by progress along
the axis of a time coordinate. The length of time that the system is in a specific
phase H, is then represented by an interval on the axis. The probability of
a phase is expressed by the relative length of time that the system is in that
phase. Thus the time ensemble is the distribution of the system in phase with
respect to time. The probability of a phase is defined in terms of relative time
during which the system is in the phase, but this probability may be expressed
in terms of the distribution of systems within an ensemble of similar systems`.
One is thus led to introduce an ensemble of co-existing independent systems,
and to consider their distribution in phase. Such an ensemble is essentially
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fictitious, and therefore has been called "virtual" by P. Hertz. The term
"virtual" suggests that the ensemble consists of the possibilities of phase of a
single system which alone is real. P. Hertz, however, has imagined a natural
virtual ensemble: Consider a roulette game in which a circular board is sub-
divided into 37 equal sectors, around which a ball traveling with constant speed
will remain in the null field 1/37th of the time. This defines a phase and the
probability of its occurrence in terms of the time ensemble. If in a gambling
hall there were 3700 games going on independently we should expect that in
100 of the games the ball would be in the null sector. To the time ensemble of
a single game there corresponds a virtual ensemble of games which can be
imagined as real.

Historically, the first statistical inquiry was into the distribution of mole-
cules in an assembly with respect to a property. Maxwell's distribution law of
molecular velocities was the first important result obtained in the field. For the
study of these problems the application of the g-space was especially the work
of Boltzmann. Statistical inquiries were next directed to the time ensemble,
the study of which was initiated by Boltzmann in his effort to prove that the
Maxwell-Boltzmann distribution is the only one which can remain steady.
The explicit consideration of virtual ensembles was first presented by Boltz-
mann in 1871. Maxwell continued the investigation of such ensembles and
applied the term "statistical" to the employment of them. The theory of vir-
tual ensembles, or simply ensembles, was built into a system by Gibbs, who in
his classical treatise published in 1902 restricted the term "statistical me-
chanics" to the theory of ensembles of independent systems; in this usage he
has been followed by P. and T. Ehrenfest. However, the scope of contempo-
rary statistical mechanics may include any consideration of distribution laws,
as well as operations with ensembles of systems.
The most characteristic procedure of statistical mechanics is the employ-

ment of virtual ensembles, which are ensembles of systems similar in structure
to a given real system but differing in initial conditions. A virtual ensemble
represents the totality of possibilities of phase of a given real system. The indi-
vidual systems are represented by points in the P-space, which is filled with the
representative points of many systems as if it were a fluid. As the systems
change in accordance with the equations of motion, the representative points
describe phase paths in the P-space; a volume element containing particular
points is deformed by the motions into a new volume element (see fig. 1).
Liouville's theorem states that the volume of a given set of points traveling
with the fluid remains constant during time; the representative points flow like
an incompressible fluid. Now states mechanically connected with one another
are to be considered equally probable. Since the representative points for me-
chanically connected phases occupy equal volumes in qp phase space, the
probability of a phase may be expressed as proportional to the volume occu-
pied by the phase points. Hence Liouville's theorem renders possible the
definition of probability in terms of volume of phase space.
The density of systems in P-space is expressed as a function of the energy.

It follows that the virtual ensembles are in statistical equilibrium, that is, the
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time-rate of flow of points into a fixed volume element in phase space is equal
to the time-rate of flow out of it. Virtual ensembles may be divided into two
classes: surface ensembles distributed over an energy surface in phase space,
and ensembles distributed throughout a volume in phase space. The theoretical
problems raised by the employment of ensembles may be explained in terms of
the surface ensemble, called "microcanonical" by Gibbs.
The observable properties of a single real system are determined by the

average in time of a function of the coordinates and momenta which specify the
system. Let us have given an ensemble, the phase points of which lie on a
given energy surface in the phase space of the total system. The ensemble is in

Fig. 1

statistical equilibrium. The function of the ensemble of similar systems is to
enable one to find the time-average of a quantity for a single system by calcu-
lating the average over the ensemble. The operation depends on the represen-
tation of the time ensemble by the virtual ensemble of similar systems. In
order to justify the method, Boltzmann and Maxwell assumed that the time-
average is the same for all systems on the energy surface. This will hold if all
phase curves coincide, that is, if a given phase curve passes through every point
of the energy surface. This hypothesis has been called the ergodic hypothesis;
the systems on the surface of constant energy, the ergodic surface, have been
called ergodic systems. But it has been demonstrated that ergodic systems are
impossible. Of substitute hypotheses, which would justify the application of
ensembles in order to obtain the approximate results of experiment, the quasi-
ergodic hypothesis may be mentioned. According to the latter hypothesis the
phase curve passes as near as one pleases to every point of the energy surface.
The investigations of Koopman, G. D. Birkhoff, E. Hopf, and J. von Neu-
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mann, with the aid of the theory of linear transformations of Hilbert space,
have shown that the great majority of non-integrable dynamical systems
possess the quasi-ergodic property.

I now introduce virtual ensembles that are distributed throughout a volume
in F-phase space. We have seen that the surface ensemble consists of systems,
the phase points of which lie on a given energy surface, Eo = const., in the
F-space. Gibbs introduced an ensemble which consists of systems, the phase
points of which are distributed with uniform density within a shell of phase
space of thickness AEo. A graph of this distribution is represented by the solid

Io gesE

Fig. 2

line in the accompanying diagram (fig. 2). Since AEo is infinitesimal, the distri-
bution in the shell is equivalent for physical problems to the ergodic surface dis-
tribution of Boltzmann. The distribution in the thin shell is a discontinuous
function of the energy. Gibbs also introduced a continuous distribution of phase
points throughout all phase space. This canonical distribution is expressed by
p = NJ1-E)1', where p is the density of distribution, N the total number of
systems, and 4, and 0 are constants. The graph of the canonical distribution
is represented by the dotted line in figure 2. On account of the large number of
degrees of freedom of the systems studied, the canonical distribution has a
steep maximum within the thin shell, so that the overwhelming majority of
phase points fall within the thin shell. If one sets P = eta )'9, then Pdqi, * * ,

dqndpi, . , dp. is the ratio of the number of systems falling within the
element of extension-in-phase dql, *.* , dp,1 to the whole number of systems.
P was called by Gibbs the coefficient of probability of the phase considered.
As a realization of a canonical ensemble for a gaseous system, Gibbs cited a set
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of portions of gas, each in contact with an infinite reservoir of heat at a con-
stant temperature. The energy of a gaseous system under these conditions
would fluctuate about a mean value E. This canonical ensemble of systems
would represent the time ensemble of a single gaseous system in contact with
an infinite source of heat at a given temperature. For systems of many degrees
of freedom, such as a gaseous system, calculations with the canonical ensemble
yield results that are equivalent for physical purposes to those obtainable with
the ensemble of uniform density in a thin shell. The average value of a physical
quantity taken over the canonical ensemble will be practically the same as the
average over the systems in the shell, and hence the same as the average over
an ensemble on the ergodic surface of constant energy.

IV
It is time now to present some of the applications of statistical mechanics to
physical problems. As I have already said, statistical mechanics was created in
order to apply atomism to the theory of matter. The distribution of molecular
velocities in a gas was the first problem; the explanation of the laws of thermo-
dynamics on mechanical principles was the second. In the hands of Gibbs, sta-
tistical mechanics was an instrument to explain thermodynamics as generally
as possible. I consider this latter application of statistical mechanics first.
Thermodynamics is the study of transformations of systems in which

changes of energy are correlated with changes of heat content and temperature.
It is based upon two classical general principles, the first and second laws,
to which has been added a principle or theorem about the entropy of sub-
stances at the absolute zero. The subject matter of thermodynamics is phe-
nomenological; its concepts express directly measurable quantities such as
pressure, temperature, volume, quantity of heat, electromotive force. In prin-
ciple, no use is made of the concepts of atom, molecule, and other particles in
thermodynamics.
Thermodynamics commands interest and admiration for the generality of

its principles, the cogency of its deductions, the agreement of its consequences
with experience. But thermodynamics was limited in its power to give a theo-
retical account of physical phenomena. For example, it supplied relations be-
tween specific heats at constant volume and at constant pressure, but was
unable to determine the functional dependence of specific heat on temperature.
The standpoint of this classical phenomenological theory had the advantage
that its results were not affected by changes in theories of atomic and molecu-
lar structure, but it failed to give a theoretical account of the more intimate
and detailed nature of phenomena. The theoretical impulse, therefore, insisted
upon leaving the secure field of thermodynamics in order to analyze more inti-
mately the mechanism of phenomena. Hence was developed the kinetic-
molecular theory of matter; by the dynamics of systems of molecules it was
proposed to interpret the second law of thermodynamics. As applied to revers-
ible processes, the second law involves the concept of entropy, which is a func-
tion of the state of a system. Irreversible processes in isolated systems tend to
go in a direction so as to increase the entropy of a system.
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The kinetic theory, which was employed initially to explain the laws of
thermodynamics mechanically, was based upon definite molecular models.
Molecules were imagined as elastic spheres, and the deduction of Maxwell's
distribution law by the method of collisions exemplifies the employment of
this model. As conceived by Gibbs, statistical mechanics was developed in
order to generalize the mechanical foundations of thermodynamics. Such a
generalization was held to be desirable because, in many instances, there was
lacking a knowledge of the structural and dynamical properties of matter; and
even if such detailed knowledge existed one should not make use of it, for the
laws of thermodyanamics, which are valid for systems of different structure,
must be a consequence of the properties common to all bodies. The generality
of the laws of thermodynamics demands a like generality in our mechanical
discussion of them. The fundamental assumption of the statistical mechanical
derivation of thermodynamics by Gibbs is that the systems are mechanical.
The canonical ensemble provides a basis for Gibbs's discussion of thermo-

dynamics. I have already cited his expression for the coefficient of probability,
P = e(O-E)/e. = log P = (st - E)/O is called the index of probability. E is
the energy of the system and is a function of the phase and certain external
parameters ri, r2, rj, * - . . The reaction of the system to external forces along
the parameter rh is given by Rh = - (aE/Orh). qi corresponds to Helmholtz's
free energy. 0 is called the modulus and is equal to kT, where T is the absolute
temperature in thermodynamics. The coupling of two ensembles of the same
modulus is analogous to the contact of two bodies at the same temperature.
Of fundamental interest is the expression for changes of entropy in reversible

processes, as a formulation of the second law of thermodynamics. Since the
sum of all the probabilities is taken as unity, fe("-E/''dT = 1, where the
integral is extended over all phase space. Considering changes of 0 and rh,
we get

dE + Ridr +**.-do =-

This, if we neglect the sign of averages, is identical in form with the thermo-
dynamic equation

dS = d'Q = dE + Ridr, + R2dr2 +**.
T T

which is the mathematical expression of the second law of thermodynamics for
reversible processes. Gibbs thus showed that - k- is analogous to the entropy
S.
Gibbs also gave other definitions of entropy in addition to S = -kui. A

second definition is, when provided with a constant k, S = k log V, where V
is the volume of phase space enclosed by the ergodic surface in space over
which the energy is E. A third definition is S = k log dV/dE. For systems of
many degrees of freedom these definitions are virtually equivalent.
Having exemplified the first application of statistical mechanics to physical

problems by Gibbs's discussion of thermodynamics, I now take up the second
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problem, namely, to find the distribution of particles in an assembly in
equilibrium. With this problem one abandons the generality of thermody-
namics, and assumes the risks involved in a theory of the fine-scale structure
of physical reality. For concreteness the system under consideration may be
visualized as a gas consisting of N similar molecules. The distribution which is
sought is expressed with the aid of the p-space, the phase space for a molecule.
In the present discussion I assume that the g-space is subdivided into equal
volume elements w. A macrophysical state is determined by the distribution of
the molecules, which is defined by a set of numbers a,, a2, a3,n - - . A micro-
physical state is determined by a complexion, which is a particular assignment
of molecules to the various cells. Corresponding to a particular microphysical
state there is a volume in P-space of magnitude wN. If molecules are inter-
changed between cells, new complexions are generated without changing the
distribution. Thus, assuming the significance of interchangeability of mole-
cules, to a given macrophysical state there correspond many microphysical
states. Since to each microphysical state there corresponds an element of
volume in r-space, there corresponds to a macrophysical state, as determined
by a distribution, a set of volume elements, which in view of relations of sym-
metry between the members of the set has been called a "star." The number
of complexions which will realize a given macrophysical state determined by

the distribution a,, a2, a8 . . . is N I . All microphysical states are
a,1 a2 1 a3a * *

postulated to have an equal a priori probability, or, better, the same statistical
weight. The total volume in P-space representing a given macrophysical state

is then N I WN. The most probable macrophysical state, which is as-
a,1 a2 . . .

sumed to be the equilibrium state, is that for which the volume in phase space
is a maximum. Accordingly, one seeks the distribution for which the number
of complexions is a maximum, subject to the conditions

1a, =N
laifsi E,

where es is the energy of the molecule in the ith cell in p-space. One obtains the
Maxwell-Boltzmann distribution law a, = AeC/`T.

V

So far in this survey of statistical mechanics I have formulated problems on
the basis of classical mechanics. Quantum theory has brought to light discon-
tinuities in physical processes which are symbolized by the quantum of action
h (h = 6.55 X 10-27 erg sec.). The modification of statistical mechanics re-
quired by quantum theory has occurred in two stages. The earlier form of
quantum theory, appropriately called the "classical quantum theory," intro-
duced the quantum of action by imposing quantum conditions upon motions
that were otherwise determined by classical dynamics. Consider, for example,
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the simple harmonic oscillator, the phase curves of which are ellipses in two-
dimensional qp space (see fig. 3). The quantum condition J = ifpdq = nh
restricts the possible phase curves to a discrete series of curves, between which
the area is h. It is convenient to introduce angle and action variables, w, J; the
action phase space for this problem of one degree of freedom is one-dimensional.
The essence of the quantum theory is that the phase space of such a periodic
system has a definite structure. The weight factor for regions of phase space is
variable, because certain regions are prohibited to the system by the quantum

Fig. 3

conditions. In classical applications of statistical mechanics the subdivision
of a phase space into cells was arbitrary. The quantum theory fixes the cells.
For a system of two particles, each of one degree of freedom, the action r-space
consists of two dimensions, along the axes of which are laid off values of J1= nlh
and J2 = n2h. Since J = nh, the representative point of the system can occur
only in certain discrete positions of this space. It is convenient to construct
around each point a square having the side h and to think of the F-space as
divided into elementary cells of area h2; thus the space has the form of a two-
dimensional cubical lattice. In the general case of f degrees of freedom, the
cells are f-dimensional cubes of volume hf. One speaks of points representing
systems as "lying in certain cells," but in reality their positions are limited to
the cell centers. All cells are equally probable, that is, have the same statistical
weight. The weight of a degenerate state is given by the total volume of all
cells which correspond to it in I-space.
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The statistics of classical quantum theory, like that of classical mechanics,
was based upon the principle that all complexions arising from the permuta-
tions of similar particles are equally probable a priori. The concept of com-
plexion was based upon the assumption that one can distinguish between similar
elements. The present form of the quantum theory, which may be called
"wave mechanics" since it symbolizes states of systems by functions which
satisfy a wave equation, abandons the principle of distinguishability, so that
new forms of statistics result. However, even before the new wave mechanics
was conceived, these new types of statistics had been discovered in the effort
to create an adequate theory of radiation and to formulate the laws of the dis-
tribution of electrons in atoms.
The new forms of statistics discovered by physicists may be explained by

considering the simple example of two particles, a and b, which may be dis-m [D' If2 E
Fig. 4

tributed over two cells, 1 and 2. We can assign the two particles to the two cells
in the four ways shown in figure 4. Each of these realizations is a complexion.
In classical statistical mechanics every one of these complexions had the same
statistical weight. Now a distribution is defined by the numbers a,, a2 of par-
ticles in the respective cells. Thus we may have three possible distributions
of the two particles over the two cells:

I. a,= 2, a2= 0.
II. a, = 0, a2= 2.

III. a,= 1, a2 = 1.

Since two complexions realize distribution III, whereas one complexion realizes
I and one complexion realizes II, in classical statistical mechanics distribution
III was held to be twice as probable as either I or II. The new forms of statis-
tics are based upon the principle that, instead of the complexion, the distri-
bution is the unit of discussion. One mode of expression for the new statistics
is that the cells of the phase space are distributed over the particles. If the
g&-space is divided intoM cells, and bo is the number of quantum cells contain-
ing no particles, bi the number of cells containing one particle, and so on, then

the probability factor is MIthe ~~~~bob,1!b21 b3! . .

I first take up the new statistics of Bose-Einstein. This statistics was as-
sumed by Bose in order to derive Planck's law for heat radiation by a statistical
theory of light quanta, and was then applied by Einstein to ideal gases. For the
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Bose-Einstein statistics it is assumed that a cell can have any number of par-
ticles. The three distributions I, II, and III are equally probable. In terms of
our example of two particles which may be distributed over two cells, the two
complexions in which there is one particle in each cell counts as one.
The second type of new statistics was introduced by Fermi. Pauli had pre-

viously discovered an exclusion principle for electrons in atoms: no two elec-
trons in an atom can have the same set of quantum numbers. Fermi extended
the Pauli Verbot to molecules of an ideal gas in which no two molecules can
occupy the same celL In our example of two particles and two cells, the dis-
tributions in which there is more than one particle, I and II, are excluded.
Only distribution III is physically possible.
The difference between the Boltzmann-Planck statistics and the new forms

may be expressed in terms of a difference in the definition of phase. Gibbs dis-

!~~ * * @ (7 ^J

o 1k 24A J.4 19
Fig. 5

tinguished between a specific definition and a generic definition of phase. The
basis of the generic definition was stated by Gibbs as follows: "If two phases
differ only in that certain entirely similar particles have changed places with
one another, are they to be regarded as identical or different phases? If the
particles are regarded as indistinguishable, it seems in accordance with the
spirit of the statistical method to regard the phases as identical." Classical
theories of distributions of particles in systems were based upon a specific
definition of phase, according to which the permutation of particles generates
new phases. The new forms of quantum statistics are based upon a generic
definition of phase; microphysical states which arise from a given state by
interchanging similar particles are not considered to be new states.
The difference between the two definitions may be explained in terms of

modes of representation in phase space. Consider a system of two one-dimen-
sional particles, for each of which the possible states are J = 0, lh, 2h, 3h, 4h.
The action g-space is a line which is divided into cells of volume h (see fig. 5).
Let the assignment of the particles in the system be that particle a is in cell
J = 4h, b in cell J = 2h. The distribution is defined by a2 = 1, a4 = 1, all
other ai = 0. The P-space of the system is two-dimensional with axes for J1 and
J2 (fig. 6). The microphysical state defined by the given assignment is repre-
sented in r-space by the cell in which falls the point J1 = 4h, J2 = 2h. This
cell is designated A in the diagram of the P-space. Another assignment of the
two particles is obtained by interchanging them, so that J1 = 2h, J2 = 4h.
This microphysical state is represented by the cell A'. Cells A and A' are sym-
metrical with respect to the bisectrix OD. In general, the permutation of simi-
lar particles produces in P-space, out of one cell, a star-shaped arrangement of
cells symmetrical with respect to certain hyperplanes. If there are N particles
the maximum number of cells in such a "star" is N !.
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The classical statistics of physical atomism was based on the interchange-
ability of similar particles. All assignments which were related by permutations
of particles were regarded as different microphysical states, and each was pos-
tulated to have the same probability, or statistical weight. The probability of
all cells of r-space was the same, and every cell within a "star" had to be
counted. This specific definition of phase was at the basis of classical quantum
statistics, as well as Boltzmann's classical statistics. The application to the
present example is that the macrophysical state determined by the distribution
a2 = 1, a4 = 1 is represented by A and A'. The weight of the state is represented

34 IBh 2S ah 4A

24 ~~~A

0

Fig. 6

by the total area of the two cells A and A'. The number of possible assignments

of particles in a given distribution is (DB = N! . In the example, 4B
a1 ! a1 .aa!

21 2_

The generic definition of phase is the basis of the new statistics. On this
definition the totality of all equivalent phases resulting from the permutation
of identical particles must be considered as the same phase, and counted as
one. Only one cell in the star of cells related by permutation can be counted.
In the example, the state a2 = 1, a4 = 1 is represented by the single cell A.
Within the statistics founded on the generic definition of phase are distin-
guished two forms. These two forms of quantum statistics assign different roles
to singular cells which occupy positions of symmetry. Consider a state of our
two-dimensional illustration in which both particles have the same momenta,
J1 = J2 = 3h. In the action F-space the state is represented by the cell B
lying on the bisectrix. In this instance the permutation of particles does not
generate a new cell. The Bose-Einstein statistics presupposes that any number
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of identical particles may be in the same quantum state. Singular cells, such
as B, must be included in the representation of phase. The Fermi statistics
excludes singular cells, since identical particles may not be in the same quan-
tum state.
The statistical mechanical methods of Gibbs have been extended to quan-

tum statistics. One expression for entropy is S = k log V, where V is the
volume of F-space enclosed by the ergodic surface of constant energy. In
quantum theory the cells of the action F-space are of volume hf. If 4' is the
number of cells with centers in the portion of F-space limited by the energy
surface, 4 = V/h', so that the entropy can be expressed by S = k log 4b. In
view of the generic definition of phase, however, only a fraction of the phase
space must be considered. In the two-dimensional example, one takes into
account only the half of the quadrant below the bisectrix OD. In general, one
has to take as (' in the equation for entropy the number of cells in a pyramid
with its vertex in the origin filling the part 1/N ! of the total volume. Since the
Bose-Einstein statistics allows singular cells, whereas that of Fermi excludes
them, the pyramid must be accommodated to the type of statistics.
Gibbs also defined entropy in terms of the canonical ensemble. For this en-

semble fe(P-E)/Odr = 1, where the integral is extended over all phase space.
The free energy is determined by e-"'9 = JfeCE°dr. The integral is called the
integral of states. The entropy

In quantum theory the integral of states is replaced by a sum of states taken
over all the cells of P-space.

Z=h-EilkTZ = l

= -kTlogZ,

For the evaluation of the sum of states, Darwin and Fowler have devised
methods based upon complex integration and the method of steepest descents.

VI

There remains as a final topic the physical basis which wave mechanics has
provided for the new form of statistics. The new mechanics involves a drastic
transformation in the concept of state of a dynamical system. In classical
mechanics the state is defined in terms of values of coordinates of position and
components of momentum. Wave mechanics, as interpreted under the leader-
ship of Niels Bohr, is guided by the operational definition of physical concepts,
and from this point of view significance depends on methods of determining
the values of physical quantities. Now experimental arrangements for the
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measurement of canonically conjugated coordinates of position and compo-
nents of momentum mutually interfere with one another. The determination
of the value of one quantity disturbs in an uncontrollable manner a previously
determined value of the conjugate quantity. Precise values of canonically
conjugated variables cannot be assigned simultaneously, and hence the clas-
sical definition of state is inapplicable. In quantum mechanics the state of a
system is symbolized by a function 45, usually called a wave function, of a set
of variables, such as the coordinates of position which specify the configuration
of a system. The wave function transforms in time in accordance with an

equation first expressed by Schroedinger, Ih d4 + HAt = 0, where H is an
27ri dt

operator derived from the Hamiltonian function of the classical equations.
The characteristic values determined by Schroedinger's equation are the pos-
sible results of observation on the system. From characteristic wave functions
one can calculate the probabilities of obtaining the possible results of obser-
vation.
The theory of wave mechanics for the problem of many bodies has been

developed and applied to assemblies of particles, such as a gas which is an
assembly of molecules, radiation in an enclosure which is an assembly of pho-
tons, an atom which is an assembly of electrified particles. The particles of
these assemblies are assumed to be alike. The constituent particles in the assem-
blies cannot be discriminated observationally, and acknowledgment of this
circumstance has led to important consequences for statistical physics.

Let us suppose that a solution of the wave equation for N particles is '
= p.(ri)#,p,(r2).* **,(rN), in which ri, r2, r3, * * * designate the coordinates
of the particles. An interchange of arguments for two particles leads to another
solution of the wave equation, because a permutation of similar particles leaves
the state of the system unaltered. By permuting the particles one can build up

N! independent wave functions, a linear combination of which is
a,! a2! as! ...

again a solution. Of especial interest are the symmetrical and anti-symmetrical
solutions. The symmetrical solution is formed by adding the N! products
obtained by permutation, w' = .* * * ,(rN). This solution re-
mains unchanged by an interchange of particles.The anti-symmetrical solu-
tion changes its sign if two particles are interchanged. The simplest representa-
tion of this solution is the determinant

iTa = 14,.i(rJ1| i, k = 1, 2, * ,N .

The anti-symmetrical solution does not exist when two or more of the sub-
scripts n, are identical. Anti-symmetric states of the system provide the basis
for the Fermi statistics, according to which no two particles can be in the
same quantum state, in other words, fall in the same cell of ,u-space. In a sys-
tem of N similar particles only states occur which can be expressed as a linear
aggregate of characteristic functions of the same symmetric class. Symmetric
and anti-symmetric states can never combine.
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To conclude: Statistical mechanics was initially developed on the basis of
classical mechanics. Classical statistical mechanics provided a general me-
chanical foundation for thermodynamics and provided means of finding the
distribution of particles within an assembly. Quantum theory introduced dis-
continuity which was expressed in terms of a discrete structure of phase space.
In classical discussions the permutation of similar particles was held to give
rise to different states for statistical purposes. But the demands imposed by
the statistical theories of quanta and of electrons brought about the introduc-
tion of statistics based upon indistinguishability of the particles. This statistics
then found its physical foundation in the new wave mechanics which brought
to light non-combining symmetric and anti-symmetric states. The symmetric
states form the basis of the Bose-Einstein statistics which applies to light
quanta; the anti-symmetric states form the basis of Fermi's statistics which
applies to electrons. However, the general methods of classical statistical me-
chanics have been carried over to quantum theory. Especially have the general
methods, which Gibbs so profoundly formulated for classical theory, admitted
adaptation for the development of a quantum statistical mechanics.
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